Skip to main content

Self-Sensing Cantilever Sensor for Bioscience

  • Chapter
Applied Scanning Probe Methods VIII

Part of the book series: Nano Science and Technolgy ((NANO))

  • 1803 Accesses

Abstract

A simple and high-sensitivity detection system is desired in the fields of biotechnology and medical science. In order to develop the system, one of the techniques is the use of a microcantilever mass sensor using a harmonic vibration with a resonance frequency. In this chapter, we describe a harmonic vibration-type self-sensing cantilever sensor in bioscience applications. Firstly, we introduce the cantilever mass sensor and its vibrations using theoretical analysis of cantilever motion and finite element method simulation. Then, we explain details of the selfsensing system using a piezoresistive cantilever. Finally, we demonstrate two application studies to achieve femtogram sensitivity, one for water molecule detection in air and the other for the biomolecular reaction between an antigen and an antibody in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James AT, Martin AJP (1952) Biochemistry 50:679

    Article  Google Scholar 

  2. Liu R, Zhou JL, Wilding A (2004) J Chromatogr A 1022:179

    Article  Google Scholar 

  3. Ma WT, Fu KK, Cai Z, Jiang GB (2003) Chemosphere 52:1627

    Article  Google Scholar 

  4. Hamblin C, Barnett ITR, Hedger RS (1986) J Immunol Methods 93:115

    Article  Google Scholar 

  5. Avremeas S (1969) Immunochemistry 6:43

    Article  Google Scholar 

  6. Aozawa O, Ohta S, Nakano T, Miyata H, Nomura T (2001) Chemosphere 45:195

    Article  Google Scholar 

  7. Janshooff A (2004) In: Baltes H (ed) Sensor update, vol 9. Wiley, New York, pp 313–354

    Google Scholar 

  8. Matsuno H, Niikura K, Okahata Y (2001) Chem Eur J 7:3305

    Article  Google Scholar 

  9. Cooper MA (2004) J Mol Recognit 17:286

    Article  Google Scholar 

  10. Liedberg B, Lundström I (1993) Sens Actuators B 11:63

    Article  Google Scholar 

  11. Melendez J, Carr R, Bartholomew DU, Kukanskis K, Elkind J, Yee S, Furlong C, Woodbury R (1996) Sens Actuators B 35:212

    Article  Google Scholar 

  12. Saenko E, Sarafanov A, Ananyeva N, Behre E, Shima M, Schwinn H, Josic D (2001) J Chromatogr A 921:49

    Article  Google Scholar 

  13. Berger R, Gerber C, Lang HP, Gimzewski JK (1997) Microelectron Eng 35:373

    Article  Google Scholar 

  14. Lang HP, Baller MK, Berger R, Gerber C, Gimzewski JK, Battiston FM, Fornaro P, Ramseyer JP, Meyer E, Güntherodt HJ (1999) Anal Chim Acta 393:59

    Article  Google Scholar 

  15. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  16. Gimzewski JK, Gerber C, Meyer E, Schlittler RR (1994) Chem Phys Lett 217:589

    Article  Google Scholar 

  17. Berger R, Gerber C, Lang HP, Gimzewski JK, Meyer E, Güntherodt HJ (1996) Appl Phys Lett 69:40

    Article  Google Scholar 

  18. Berger R, Lang HP, Gerber C, Gimzewski JK, Fabian JH, Scandella L, Meyer E, Güntherodt H-J (1998) Chem Phys Lett 294:363

    Article  Google Scholar 

  19. Raiteri R, Nelles G, Butt H-J, Knoll W, Skladal P (1999) Sens Actuators B 61:213

    Article  Google Scholar 

  20. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt HJ, Gerber C, Gimzewski JK (2000) Science 288:316

    Article  Google Scholar 

  21. Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Anal Chem 73:1567

    Article  Google Scholar 

  22. Lavrik NV, Datskos PG (2003) Appl Phys Lett 82:2697

    Article  Google Scholar 

  23. Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) J Appl Phys 95:3694

    Article  Google Scholar 

  24. Sone H, Fujinuma Y, Hieida T, Hosaka S (2003) Proc SICE Annu Conf 2985

    Google Scholar 

  25. Sone H, Fujinuma Y, Hosaka S (2004) Jpn J Appl Phys 43:3648

    Article  Google Scholar 

  26. Boisen A, Thaysen J, Jensenius H, Hansen O (2000) Ultramicroscopy 82:11

    Article  Google Scholar 

  27. Porter TL, Eastman MP, Pace DL, Bradley M (2001) Sens Actuators A 88:47

    Article  Google Scholar 

  28. Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G (2003) Microelectron Eng 69:37

    Article  Google Scholar 

  29. Tang Y, Fang J, Yan X, Ji H-F (2004) Sens Actuators B 97:109

    Article  Google Scholar 

  30. Sone H, Fujinuma Y, Hieida T, Chiyoma T, Okano H, Hosaka S (2004) Proc SICE Annu Conf 1508

    Google Scholar 

  31. Sone H, Okano H, Hosaka S (2004) Jpn J Appl Phys 43:4663

    Article  Google Scholar 

  32. Hosaka S, Chiyoma T, Ikeuchi A, Okano H, Sone H, Izumi T (2006) Curr Appl Phys 6:384

    Article  Google Scholar 

  33. Sone H, Ikeuchi A, Izumi T, Okano H, Hosaka S (2006) Jpn J Appl Phys 45:2301

    Article  Google Scholar 

  34. Tortonese M, Barrett RC, Quate CF (1993) Appl Phys Lett 62:834

    Article  Google Scholar 

  35. Linnemann R, Gotszalk T, Hadjiiski L, Rangelow IW (1995) Thin Solid Films 264:159

    Article  Google Scholar 

  36. Gotszalk T, Grabiecl P, Rangelow IW (2002) Ultramicroscopy 82:39

    Article  Google Scholar 

  37. Chen GY, Warmack RJ, Thundat T, Allison DP, Huang A (1994) Rev Sci Instrum 65:2532

    Article  Google Scholar 

  38. Luna M, Colchero J, Gil A, Gomez-Herrero J, Baro AM (2000) Appl Surf Sci 157:393

    Article  Google Scholar 

  39. Gil A, Colchero J, Luna M, Gomez-Herrero J, Baro AM (2000) Langmuir 16:5086

    Article  Google Scholar 

  40. Albrecht TR, Grütter P, Horne D, Rugar D (1991) J Appl Phys 69:668

    Article  Google Scholar 

  41. Lang HP, Berger R, Andreoli C, Brugger J, Despont M, Vettiger P, Gerber C, Gimzewski JK, Ramseyer JP, Meyer E, Güntherodt H-J (1998) Appl Phys Lett 72:383

    Article  Google Scholar 

  42. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Nat Biotechnol 19:856

    Article  Google Scholar 

  43. Hyun S-J, Kim H-S, Kim Y-J, Jung H-I (2006) Sens Actuators B 117:415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sone, H., Hosaka, S. (2008). Self-Sensing Cantilever Sensor for Bioscience. In: Bhushan, B., Fuchs, H., Tomitori, M. (eds) Applied Scanning Probe Methods VIII. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74080-3_6

Download citation

Publish with us

Policies and ethics