Skip to main content

Kelvin Probe Force Microscopy: Recent Advances and Applications

  • Chapter
Book cover Applied Scanning Probe Methods VIII

Abstract

The Kelvin probe force microscopy technique is perhaps the most powerful tool for measuring the work function and the electric potential distribution with nanometer resolution. The work function is one of the most important values characterizing the property of a surface. Chemical and physical phenomena taking place at the surface are strongly affected by the work function. Although the work function is defined as a macroscopic concept, it is necessary to consider its microscopic local variations in understanding the behavior of semiconductor surfaces, interfaces and devices. In this chapter we describe and discuss recent applications of Kelvin probe force microscopy in the study of semiconductors. The method is introduced in the first section, and the second section examines the factors affecting the sensitivity and resolution of Kelvin probe force microscopy in general, and in semiconductor measurements in particular. An efficient numerical analysis of the electrostatic interaction between the measuring atomic force microscope tip and the semiconductor surface has allowed us to derive a point-spread function of the measuring tip and to restore the actual surface potential from measured images in almost real time. The third section describes the use of Kelvin probe microscopy to determine the density of surface and bulk states in inorganic and organic semiconductors, respectively. In inorganic semiconductors the method is based on scanning a cross-sectional pn junction; as the tip scans the junction, the position of the surface states relative to the Fermi level changes, thereby changing the surface potential. The energy distribution is then obtained by fitting the measured surface potential. The method is applied to various semiconductor (110) surfaces where a quantitative states distribution across most of the bandgap is obtained. In the case of organic semiconductors the density of states in obtained by injecting charge carriers into the channel of a bottom gate organic transistor. The measurement of the Fermi level shift together with the charge concentration allows us to derive the density of states of the highest occupied molecular orbital band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nonenmacher M, O’Boyle MP, Wickramasing HK (1991) Appl Phys Lett 58:2921–2923

    Article  Google Scholar 

  2. Leng Y, Williams CC, Su LC, Stringfellow GB (1995) Appl Phys Lett 66:1264–1267

    Article  Google Scholar 

  3. Kikukawa A, Hosaka S, Imura R (1995) Appl Phys Lett 66:3510–3512

    Article  Google Scholar 

  4. Chavez-Pirson B, Vatel O, Tanimoto M, Ando H, Iwamura H, Kanbe H (1995) Appl Phys Lett 67:3069–3071

    Article  Google Scholar 

  5. Mizutani T, Arakawa M, Kishimoto S (1997) IEEE Electron Devices Lett 18:423-425

    Article  Google Scholar 

  6. Arakawa M, Kishimoto S, Mizutani T (1997) Jpn J Appl Phys 36:1826–1829

    Article  Google Scholar 

  7. Shikler R, Fried N, Meoded T, Rosenwaks Y (1999) Appl Phys Lett 74:2972–2974

    Article  Google Scholar 

  8. Shikler R, Meoded T, Fried N, Mishori B, Rosenwaks Y (1999) J Appl Phys 86:107–113

    Article  Google Scholar 

  9. Krauss TD, O’Brien S, Brus LE (2001) J Phys Chem B 105:1725

    Article  Google Scholar 

  10. Kitamura S, Suzuki K, Iwatsuki M, Mooney CB (2000) Appl Surf Sci 157:222

    Article  Google Scholar 

  11. Okamoto K, Sugawara Y, Morita S (2002) Appl Surf Sci 188:381

    Article  Google Scholar 

  12. Duhayon N, Eyben P, Fouchier M, Clarysse T, Vandervorst W, Álvarez D, Schoemann S, Ciappa M, Stangoni M, Formanek P, Raineri V, Giannazzo F, Goghero D, Rosenwaks Y, Shikler R, Saraf S, Sadewasser S, Barreau N, Glatzel T, Verheijen M, Mentink SAM, Wiesendanger R, Von Sprekselen M, Maltezopoulos T, Hellemans L (2004) J Vac Sci Technol B 22:385

    Article  Google Scholar 

  13. Henning K, Hochwitz T, Slinkman J, Never J, Hoffman S, Kaszuba P, Daghlian C (1995) J Appl Phys 77:1888–1896

    Article  Google Scholar 

  14. Hudlet S, Jean MS, Roulet B, Berger J, Guthmann C (1995) J Appl Phys 59:3308

    Article  Google Scholar 

  15. Rosenwaks Y, Glatzel T, Sadewasser S, Shikler R (2004) Phys Rev B 70:85320

    Article  Google Scholar 

  16. Hochowitz T, Henning AK, Levey C, Daghlian C, Slinkman J (1996) J Vac Sci Technol B 14:457

    Article  Google Scholar 

  17. Hudlet S, Saint Jean M, Guthmann C, Berger J (1998) Eur Phys J B 2:5

    Article  Google Scholar 

  18. Belaidi S, Lebon F, Girard P, Leveque G, Pagano S (1998) Appl Phys A 66:S239

    Article  Google Scholar 

  19. Jacobs HO, Leuchtmann P, Homan OJ, Stemmer A (1998) J Appl Phys 84:1168

    Article  Google Scholar 

  20. Jacobs HO, Stemmer A (1999) Surf Interface Anal 27:361

    Article  Google Scholar 

  21. Shikler R (2003) PhD thesis, Tel-Aviv University

    Google Scholar 

  22. Jain K (1989) Fundamentals of digital image processing. Prentice Hall, New York

    MATH  Google Scholar 

  23. Kalinin SV, Bonnell D, Freitag M, Johnson AT (2002) Appl Phys Lett 81:754

    Article  Google Scholar 

  24. Mönch W (1993) Semiconductor surfaces and interfaces. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Zavyalov VV, McMurray JS, Williams CC (1999) J Appl Phys 85:7774

    Article  Google Scholar 

  26. Yang J, Kong FC (2002) J Appl Phys Lett 81:4973

    Article  Google Scholar 

  27. Eyben P, Xu M, Duhayon N, Clarysse T, Callewaert S, Vandervorst W (2002) J Vac Sci Technol B 20:471

    Article  Google Scholar 

  28. Kronik L, Shapira Y (1999) Surf Sci Rep 37:1

    Article  Google Scholar 

  29. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, New York

    Book  Google Scholar 

  30. Williams R (1962) J Phys Chem Solids 23:1057

    Article  Google Scholar 

  31. Vilan A, Shanzer A, Cahen D (2000) Nature 404:166

    Article  Google Scholar 

  32. Asuha AA, Maida O, Todokoro Y, Kobayashi H (2002) Appl Phys Lett 80:4552

    Article  Google Scholar 

  33. Nitzan A, Ratner MA (2003) Science 300:1384

    Article  Google Scholar 

  34. Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2004) Nano Lett 4:55

    Article  Google Scholar 

  35. Nicollian EH, Brews JR (1982) MOS physics and technology. Wiley, New York

    Google Scholar 

  36. Kronik L, Burstein L, Shapira Y (1993) Appl Phys Lett 63:60

    Article  Google Scholar 

  37. Hamers RJ (1989) Annu Rev Phys Chem 40:531

    Article  Google Scholar 

  38. Saraf S, Rosenwaks Y (2005) Surf Sci Lett 574:L35

    Article  Google Scholar 

  39. Saraf S, Schwarzman A, Dvash Y, Cohen S, Ritter D, Rosenwaks Y (2006) Phys Rev B 73:35336–35342

    Article  Google Scholar 

  40. Flietner H (1988) Surf Sci 200:463

    Article  Google Scholar 

  41. Fussel W, Schmidt M, Angermann H, Mende G, Flietner H (1996) Nucl Instrum Methods Phys Res A 377:177

    Article  Google Scholar 

  42. Poindexter EH, Gerardi GJ, Rueckel ME, Caplan PJ, Johnson NM, Biegelsen DK (1984) J Appl Phys 56:2844

    Article  Google Scholar 

  43. Shen Y, Diest K, Man HW, Hsieh BR, Dunlap DH, Malliaras GG (2003) Phys Rev B 68:81204(R)

    Google Scholar 

  44. Gross M, Muller DC, Nothofer HG, Scherf U, Neher D, Brauchle C, Meerholz K (2000) Nature 405:661

    Article  Google Scholar 

  45. Qibing P, Gang Y, Chi Z, Yang Y, Heeger AJ (1995) Science 269:1086

    Article  Google Scholar 

  46. Welter S, Brunner L, Hofstraat JW, De Cola L (2003) Nature 421:54

    Article  Google Scholar 

  47. Naka S, Okada H, Onnagawa H, Yamaguchi Y, Tsutsui T (2000) Synth Met 111:331

    Article  Google Scholar 

  48. Sakai K, IkezakiK (2002) ISE11 Proc IEEE 151

    Google Scholar 

  49. Honhang F, Kachu L, Shukong S (2002) Jpn J Appl Phys 41:L1122

    Article  Google Scholar 

  50. Arkhipov VI, Heremans P, Emelianova EV, Adriaenssens GJ, Bassler H (2002) J Phys Condens Matter 14:9899

    Article  Google Scholar 

  51. Koehler M, Biaggio I (2003) Phys Rev B 68:752051

    Article  Google Scholar 

  52. Horowitz G, Hajlaoui R, Delannoy P (1995) J Phys III 5:355

    Google Scholar 

  53. Horowitz G, Hajlaoui R, Bouchriha H, Bourguiga R, Hajlaoui M (1998) Adv Mater 10:923

    Article  Google Scholar 

  54. Tal O, Preezant Y, Tessler N, Chan CK, Kahn A, Rosenwaks Y (2005) Phys Rev Lett 95:256405

    Article  Google Scholar 

  55. Gao W, Kahn A (2003) J Appl Phys 94:359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenwaks, Y., Tal, O., Saraf, S., Schwarzman, A., Lepkifker, E., Boag, A. (2008). Kelvin Probe Force Microscopy: Recent Advances and Applications. In: Bhushan, B., Fuchs, H., Tomitori, M. (eds) Applied Scanning Probe Methods VIII. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74080-3_10

Download citation

Publish with us

Policies and ethics