Skip to main content

Microbial Community Analysis in the Rhizosphere by in Situ and ex Situ Application of Molecular Probing, Biomarker and Cultivation Techniques

  • Chapter
Plant Surface Microbiology

It is well known that the bacterial diversity in soil habitats is much greater compared to the artificial cultivation techniques (Torsvik et al. 1996; Chatzinotas et al. 1998). It is generally accepted that only a combination of methods including cultivation and several cultivation-independent techniques is able to provide a more representative picture of the microbial diversity in environmental habitats (Wagner et al. 1993; Liesack et al. 1997). This is also true for the plant/soil compartment, although the degree of culturability is thought to be higher on the root surface. Supposedly, rhizosphere microbes respond to the presence of easily consumable substrates on the root surface with fast growth rates, which is indicative for r-strategy; successful colonization of the rhizosphere is the final result of this behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919-1925

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detec-tion of individual microbial cells without cultivation. Microbiol Rev 59:143-169

    CAS  PubMed  Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unsta-ble variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240-2246

    CAS  PubMed  Google Scholar 

  • Aßmus B, Hutzler P, Kirchhof G, Amann RI, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser micro-scopy. Appl Environ Microbiol 61:1013-1019

    PubMed  Google Scholar 

  • Aßmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A (1997) Improved in situ track-ing of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microbial Ecol 33:32-40

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2001) Impact of growth stage on the bacterial commu-nity structure along maize roots, as determined by metabolic and genetic finger-printing. Appl Soil Ecol 52:1-11

    Google Scholar 

  • Braun-Howland EB, Vescio PA, Nierzwicki-Bauer SA (1993) Use of a simplified cell blot technique and 16S rRNA-directed probes for identification of common environmen-tal isolates. Appl Environ Microbiol 59:3219-3224

    CAS  PubMed  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188-198

    CAS  PubMed  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel KP (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24: 673-690

    Article  CAS  PubMed  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 95-140

    Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107-127

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Greaves MP (1990a) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 11-34

    Google Scholar 

  • Campbell R, Greaves MP (1990b) Methods for studying the microbial ecology of the rhi-zosphere. Meth Microbiol 22:447-477

    Article  Google Scholar 

  • Chatzinotas A, Sandaa RA, Schönhuber W, Amann R, Daae FL, Torsvik V, Zeyer J, Hahn D (1998) Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Syst Appl Microbiol 21:579-587

    CAS  PubMed  Google Scholar 

  • Christensen BB, Sternberg C, Andersen JB, Palmer Jr RJ, Nielsen JJ, Givskov M, Molin S (1999) Molecular tools for study of biofilm physiology. Meth Enzymol 310:20-42

    Article  CAS  PubMed  Google Scholar 

  • De Leij FAAM, Thomas CE, Bailey MJ, Whipps JM, Lynch JM (1998) Effect of insertion site and metabolic load on the environmental fitness of a genetically modified Pseudomonas fluorescens isolate. Appl Environ Microbiol 64:2634-2638

    Google Scholar 

  • Duarte GF, Rosado AS, Seldin L, Keijzer-Wolter AC, Van Elsas JD (1998) Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indige-nous bacterial community. J Microbiol Meth 32:21-29

    Article  CAS  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen J (2001) Analysis of bac-terial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172-178

    Article  CAS  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Rev 38:1-9

    CAS  Google Scholar 

  • Dunger W, Fiedler HJ (1997) Methoden der Bodenbiologie. Gustav Fischer-Verlag, Jena, pp 89-107

    Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1999) Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol Plant-Microbe Interact 12:813-819

    Article  CAS  Google Scholar 

  • Fegatella F, Lim J, Kjelleberg S, Cavicchiolli R (1998) Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 64:4433-4438

    CAS  PubMed  Google Scholar 

  • Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162-4167

    CAS  PubMed  Google Scholar 

  • Garland JL, Cook KL, Loader CA, Hungate BA (1997) The influence of microbial community structure and function on community-level physiological profiles. In: Insam H, Rangger A (eds) Microbial communities: functional versus structural approaches. Springer, Berlin Heidelberg New York, pp 171-183

    Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general molecular bac-teriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bac-teria associated with field-grown canola (Brassica napus L. ) and wheat (Triticum aes-tivum L.). FEMS Microbiol Ecol 26:43-50

    Article  CAS  Google Scholar 

  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720-726

    CAS  PubMed  Google Scholar 

  • Gorlach K, Shingaki R, Morisaki H, Hattori T (1994) Construction of eco-collection of paddy field soil bacteria for population analysis. J Gen Microbiol 40:509-517

    Article  CAS  Google Scholar 

  • Hartmann A, Aßmus B, Kirchhof G, Schloter M (1997) Direct approaches to study soil microflora. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbi-ology. Marcel Dekker, New York, pp 279-309

    Google Scholar 

  • Hartmann A, Lawrence JR, Aßmus B, Schloter M (1998) Detection of microbes by laser confocal microscopy. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, Supplement 3. Kluwer, Dordrecht, Chap. 4. 1. 10

    Google Scholar 

  • Hartmann A, Stoffels M, Eckert B, Kirchhof G, Schloter M (2000) Analysis of the presence and diversity of diazotrophic endophytes. In: Triplett EW (ed) Prokaryotic nitrogen fixation: A model system for analysis of a biological process. Horizon Scientific Press, Wymondham, USA, pp 727-736

    Google Scholar 

  • Hattori R, Hattori T (1980) Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J Gen Appl Microbiol 26:1-14

    Article  CAS  Google Scholar 

  • Hengstmann U, Chin KJ, Janssen PH, Liesack W (1999) Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numeri-cally abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65:5050-5058

    CAS  PubMed  Google Scholar 

  • Herron PR, Wellington EMH (1990) New method for extraction of streptomycete spores from soil and application to the study of lysogene in sterile amended and nonsterile soil. Appl Environ Microbiol 56:1406-1412

    PubMed  CAS  Google Scholar 

  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negli-gible relative to natural factors. Appl Environ Microbiol 68:1325-1335

    Article  CAS  PubMed  Google Scholar 

  • Hirano SS, Willis DK, Clayton MK, Upper CD (2001) Use of an intergenic region in Pseudomonas syringae pv. syringae B728a for site-directed genomic marking of bac-terial strains for field experiments. Appl Environ Microbiol 67:3735-3738

    Article  CAS  PubMed  Google Scholar 

  • Hojberg O, Schnider U, Winteler HV, Sorensen J, Haas D (1999) Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl Environ Microbiol 65:4085-4093

    CAS  PubMed  Google Scholar 

  • Hopkins DW, MacNaughton SJ, O’Donnell AG (1991) A dispersion and differential cen-trifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23:217-225

    Article  Google Scholar 

  • Koch B, Worm J, Jensen LE, Hojberg O, Nybroe O (2001) Carbon limitation induces sig-mas-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363-3370

    Article  CAS  PubMed  Google Scholar 

  • Kragelund L, Hosbond C, Nybroe O (1997) Distribution of metabolic activity and phos-phate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl Environ Microbiol 63:4920-4928

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 125-175

    Google Scholar 

  • Lee S, Malone C, Kemp PF (1993) Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacte-ria. Mar Ecol Prog Ser 101:193-201

    Article  CAS  Google Scholar 

  • Liesack W, Stackebrandt E (1992) Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial envi-ronment. J Bacteriol 174:5072-5078

    CAS  PubMed  Google Scholar 

  • Liesack W, Janssen PH, Rainey FA, Ward-Rainey N, Stackebrandt E (1997) Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbi-ology. Marcel Dekker, New York, pp 375-439

    Google Scholar 

  • Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Micro-biol Ecol 21:231-242

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizos-phere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 60:2944-2948

    Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, John-son KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987-1994

    Article  CAS  PubMed  Google Scholar 

  • Lovell CR, Bagwell CE, Czákó M, Márton L, Piceno YM, Ringelberg DB (2001) Stability of a rhizosphere microbial community exposed to natural and manipulated environ-mental variability. FEMS Microbiol Ecol 38:69-76

    Article  CAS  Google Scholar 

  • Ludwig W, Amann R, Martinez-Romero E, Schönhuber W, Bauer S, Neef A, Schleifer KH (1998) RNA based identification and detection systems for rhizobia and other bacte-ria. Plant Soil 204:1-19

    Article  CAS  Google Scholar 

  • Macdonald RM (1986) Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific microorganisms from suspension by elutriation. Soil Biol Biochem 18:399-406

    Article  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L. ). Microb Ecol 34:210-223

    Article  PubMed  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligo-deoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. System Appl Microbiol 15:593-600

    Google Scholar 

  • Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097-1106

    Article  CAS  PubMed  Google Scholar 

  • Metz S (2001) Herstellung von monoklonalen Antikörpern gegen die Cu-abhängige dis-similatorische Nitritreduktase und deren Anwendung zum in situ-Nachweis der Den-itrifikationsaktivität von Bakterien. Doctoral Thesis, Ludwig-Maximilians-Univer-sität München, Fakultät für Biologie

    Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizos-phere communities in response to crop species, soil origin and inoculation with the marker gene-tagged Sinorhizobium meliloti L33. Microb Ecol 40:43-56

    CAS  PubMed  Google Scholar 

  • Mitsui H, Gorlach K, Lee HJ, Hattori R, Hattori T (1997) Incubation time and media requirements of culturable bacteria from different phylogenetic groups. J Microbiol Methods 30:103-110

    Article  CAS  Google Scholar 

  • Mogge B, Lebhuhn M, Schloter M, Stoffels M, Pukall R, Stackebrandt E, Wieland G, Back-haus H, Hartmann A (2000) Erfassung des mikrobiellen Populationsgradienten vom Boden zur Rhizoplane von Luzerne (Medicago sativa). In: Hartmann A (ed) Biologis-che Sicherheit: Biomonitor und Molekulare Mikrobenökologie. Projektträger BEO, Jülich, pp 217-224

    Google Scholar 

  • Moore RL, Marshall KC (1981) Attachment and rosette formation by hyphomicrobia. Appl Environ Microbiol 42:751-757

    CAS  PubMed  Google Scholar 

  • Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 373-409

    Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leuwenhook 73:127-141

    Article  CAS  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231-295

    CAS  PubMed  Google Scholar 

  • Pukall R, Brambilla E, Stackebrandt E (1998) Automated fragment length analysis of flu-orescently-labeled 16S rDNA after digestion with 4-base cutting restriction enzymes. J Micobiol Meth 32:55-63

    Article  CAS  Google Scholar 

  • Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801-809

    Article  CAS  PubMed  Google Scholar 

  • Ramos C, Licht TR, Sternberg C, Krogfelt KA, Molin S (2001) Monitoring bacterial growth activity in biofilms from laboratory flow-chambers, plant rhizosphere and animal intestine. Methods Enzymol 337:21-42

    Article  CAS  PubMed  Google Scholar 

  • Rheims H, Sproer C, Rainey FA, Stackebrandt E (1996) Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in differ-ent environments and geographical locations. Microbiology 142:2863-2870

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schlesner H (1994) Development of media suitable for the microorganisms morpholog-ically resembling Planctomycetes spp. , Pirellula spp. , other Planctomycetales from various aquatic habitats using dilute media. System Appl Microbiol 17:135-145

    Google Scholar 

  • Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification, and local-ization of Azospirillum in the rhizosphere of wheat using fluorescence-labelled mon-oclonal antibodies and confocal scanning laser microscopy. J Microsc 171:173-176

    Google Scholar 

  • Schloter M, Assmus B, Hartmann A (1995) The use of immunological methods to detect and identify bacteria in the environment. Biotechnol Adv 13:75-90

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313-340

    Article  Google Scholar 

  • Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921-1942

    CAS  PubMed  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylho-moserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761-5770

    Article  CAS  PubMed  Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-clus-ter. Syst Appl Microbiol 24:83-97

    Article  CAS  PubMed  Google Scholar 

  • Stotzky G, Broder MW, Doyle JD, Jones RA (1993) Selected methods for the detection and assessment of ecological effects resulting from the release of genetically engineered microorganisms to the terrestrial environment. Adv Appl Microbiol 38:1-98

    Article  Google Scholar 

  • Stubner S, Schloter M, Moeck GS, Coulton JW, Ahne F, Hartmann A (1994) Construction of umu-fhuA operon fusions to detect genotoxic potential by an antibody-cell surface reaction. Environ Tox Water Qual 9:285-291

    Article  CAS  Google Scholar 

  • Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detec-tion of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655-3664

    Article  CAS  PubMed  Google Scholar 

  • Tas É, Lindström K (2001) Identification of bacteria by their intrinsic sequences: Probe design and testing of their specificity. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual, Suppl. 5, Kluwer Academic Press, Dor-drecht

    Google Scholar 

  • Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Devel-opment and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482-6489

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities: a review. J Industr Microbiol 17:170-178

    Article  CAS  Google Scholar 

  • Tsien HC, Bratina BJ, Tsuji K, Hanson RS (1990) Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol 56:2858-2865

    CAS  PubMed  Google Scholar 

  • Unge A, Tombolini R, Molbak L, Jansson JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65:813-821

    CAS  PubMed  Google Scholar 

  • Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent meth-ods for describing microbial community structure. Appl Environ Microbiol 59:1520-1525

    CAS  PubMed  Google Scholar 

  • Wagner R (1994) The regulation of ribosomal rRNA synthesis and bacterial cell growth. Arch Microbiol 161:100-106

    Article  CAS  PubMed  Google Scholar 

  • Weidner S, Arnold W, Pühler A (1996) Diversity of uncultured microorganisms associ-ated with the seagrass Halophila stipulacea estimated from restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 62:766-771

    CAS  PubMed  Google Scholar 

  • Werner D (2001) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 197-222

    Google Scholar 

  • White DC, Ringelberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 255-272

    Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849-5854

    Article  CAS  PubMed  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmann, A. et al. (2008). Microbial Community Analysis in the Rhizosphere by in Situ and ex Situ Application of Molecular Probing, Biomarker and Cultivation Techniques. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics