The successful deciphering of the human genome has highlighted an old challenge in protein science: For most of the resolved protein sequences, we do not know the corresponding structures and functions. Neither do we understand in detail the mechanism by which a protein folds into its biologically active form. Computer experiments offer one way to evaluate the sequence–structure relationship and the folding process but are extremely difficult for detailed protein models. Only over the last few years have algorithms been developed that allow an efficient sampling of relevant protein configurations. Important examples of these new techniques will be introduced in the context of all-atom simulations of small proteins. For these molecules, the folding mechanism and the relation between secondary structure formation and folding are explored. Limitations of current energy functions are discussed.
Keywords
- Random Walk
- Prion Disease
- Bovine Spongiform Encephalopathy
- Energy Landscape
- Parallel Tempering
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
Abstract
C. B. Anfinsen: Science 181, 223 (1973)
I. P. Androulakis, C. D. Maranas, C. A. Floudas: J. Glob. Opt. 11, 1 (1997)
Z. Li, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 84, 6611 (1987)
S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi: Science 220, 671 (1983)
J. Holland, University of Michigan Press, 1975
T. Ooi, M. Obatake, G. Nemethy, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 8, 3086 (1987)
M. J. Sippl, G. Némethy, H. A. Scheraga: J. Phys. Chem. 88, 6231 (1984), and references therein
U. H. E. Hansmann, Y. Okamoto: Curr. Opin. Struct. Biol. 9, 177 (1999)
U. H. E. Hansmann, L. T. Wille: Phys. Rev. Lett. 88, 068105 (2002)
U. H. E. Hansmann, Y. Okamoto: In Annual Reviews in Computational Physics VI, edited by D. Stauffer (World Scientific, Singapore, 1999), p. 129
F. Eisenmenger, U. H. E. Hansmann, Sh. Hayryan, C.-K. Hu: Comput. Phys. Commun. 138, 192 (2001)
F. Eisenmenger, U. H. E. Hansmann: J. Phys. Chem. B 101, 3304 (1997)
U. H. E. Hansmann, Y. Okamoto: Physica A 212, 415 (1994)
A. Schug, W. Wenzel, U. H. E. Hansmann: J. Chem. Phys. 122 194711 (2005)
K. Hukushima, K. Nemoto: J. Phys. Soc. Jpn. 65, 1604 (1996); G. J. Geyer: J. Am. Stat. Assoc. 90 (431), 909 (1995)
U. H. E. Hansmann: Chem. Phys. Lett. 281, 140 (1997)
U. H. E. Hansmann, Y. Okamoto: Phys. Rev. E 56, 2228 (1997)
S. Trebst, M. Troyer, U. H. E. Hansmann: J. Chem. Phys. 124, 174903 (2006)
W. Kwak, U. H. E. Hansmann: Phys. Rev. Lett. 95, 138102 (2005)
G. M. Torrie, J. P. Valleau: J. Comput. Phys. 23, 187 (1977)
B. A. Berg, T. Neuhaus: Phys. Lett. B 267, 249 (1991)
A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, P. N. Vorontsov-Velyaminov: J. Chem. Phys. 96, 1776 (1992); E. Marinari, G. Parisi: Europhys. Lett. 19, 451 (1992)
U. H. E. Hansmann, Y. Okamoto: J. Comp. Chem. 14, 1333 (1993)
U. H. E. Hansmann, Y. Okamoto, F. Eisenmenger: Chem. Phys. Lett. 259, 321 (1996)
A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett 61, 2635 (1988); A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 63, 1658(E) (1989); and references given in the erratum
F. Wang, D. P. Landau: Phys. Rev. Lett. 86, 2050 (2001)
U. H. E. Hansmann, Y. Okamoto: J. Chem. Phys. 110, 1267 (1999); U. H. E. Hansmann, Y. Okamoto: J. Chem. Phys. 111, 1339(E) (1999)
Y. Peng, U. H. E. Hansmann: Phys. Rev. E 68, 041911 (2003)
Y. Duan, P. A. Kollman: Science 282, 740 (1998)
C. J. McKnight, D. S. Doehring, P. T. Matsudaria, P. S. Kim: J. Mol. Biol. 260, 126 (1996)
L. Wesson, D. Eisenberg: Protein Sci. 1, 227 (1992)
C.-Y. Lin, C.-K. Hu, U. H. E. Hansmann: Proteins 52, 436 (2003)
H. Gouda, H. Torigoe, A. Saito, M. Sato, Y. Arata, I. Shimada: Biochemistry 31, 9665 (1992)
G. Favrin, A. Irbäck, S. Wallin: Proteins 47, 99 (2002)
J. Lee, A. Liwo, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 96, 2025 (1999)
A. Ghosh, R. Elber, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 99, 10394 (2002)
E. M. Boczko, Ch. L. Brooks, III: Science 269, 393 (1995)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hansmann, U.H. (2008). All-Atom Simulations of Proteins. In: Rugged Free Energy Landscapes. Lecture Notes in Physics, vol 736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74029-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-74029-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74025-4
Online ISBN: 978-3-540-74029-2
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)
