Skip to main content

All-Atom Simulations of Proteins

  • Chapter
  • 1022 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 736)

The successful deciphering of the human genome has highlighted an old challenge in protein science: For most of the resolved protein sequences, we do not know the corresponding structures and functions. Neither do we understand in detail the mechanism by which a protein folds into its biologically active form. Computer experiments offer one way to evaluate the sequence–structure relationship and the folding process but are extremely difficult for detailed protein models. Only over the last few years have algorithms been developed that allow an efficient sampling of relevant protein configurations. Important examples of these new techniques will be introduced in the context of all-atom simulations of small proteins. For these molecules, the folding mechanism and the relation between secondary structure formation and folding are explored. Limitations of current energy functions are discussed.

Keywords

  • Random Walk
  • Prion Disease
  • Bovine Spongiform Encephalopathy
  • Energy Landscape
  • Parallel Tempering

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   42.79
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   54.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   54.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  1. C. B. Anfinsen: Science 181, 223 (1973)

    CrossRef  ADS  Google Scholar 

  2. I. P. Androulakis, C. D. Maranas, C. A. Floudas: J. Glob. Opt. 11, 1 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Z. Li, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 84, 6611 (1987)

    CrossRef  ADS  MathSciNet  Google Scholar 

  4. S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi: Science 220, 671 (1983)

    CrossRef  ADS  MathSciNet  Google Scholar 

  5. J. Holland, University of Michigan Press, 1975

    Google Scholar 

  6. T. Ooi, M. Obatake, G. Nemethy, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 8, 3086 (1987)

    CrossRef  ADS  Google Scholar 

  7. M. J. Sippl, G. Némethy, H. A. Scheraga: J. Phys. Chem. 88, 6231 (1984), and references therein

    CrossRef  Google Scholar 

  8. U. H. E. Hansmann, Y. Okamoto: Curr. Opin. Struct. Biol. 9, 177 (1999)

    CrossRef  Google Scholar 

  9. U. H. E. Hansmann, L. T. Wille: Phys. Rev. Lett. 88, 068105 (2002)

    CrossRef  ADS  Google Scholar 

  10. U. H. E. Hansmann, Y. Okamoto: In Annual Reviews in Computational Physics VI, edited by D. Stauffer (World Scientific, Singapore, 1999), p. 129

    Google Scholar 

  11. F. Eisenmenger, U. H. E. Hansmann, Sh. Hayryan, C.-K. Hu: Comput. Phys. Commun. 138, 192 (2001)

    CrossRef  MATH  ADS  Google Scholar 

  12. F. Eisenmenger, U. H. E. Hansmann: J. Phys. Chem. B 101, 3304 (1997)

    CrossRef  Google Scholar 

  13. U. H. E. Hansmann, Y. Okamoto: Physica A 212, 415 (1994)

    CrossRef  ADS  Google Scholar 

  14. A. Schug, W. Wenzel, U. H. E. Hansmann: J. Chem. Phys. 122 194711 (2005)

    Google Scholar 

  15. K. Hukushima, K. Nemoto: J. Phys. Soc. Jpn. 65, 1604 (1996); G. J. Geyer: J. Am. Stat. Assoc. 90 (431), 909 (1995)

    CrossRef  ADS  Google Scholar 

  16. U. H. E. Hansmann: Chem. Phys. Lett. 281, 140 (1997)

    CrossRef  ADS  Google Scholar 

  17. U. H. E. Hansmann, Y. Okamoto: Phys. Rev. E 56, 2228 (1997)

    CrossRef  ADS  Google Scholar 

  18. S. Trebst, M. Troyer, U. H. E. Hansmann: J. Chem. Phys. 124, 174903 (2006)

    Google Scholar 

  19. W. Kwak, U. H. E. Hansmann: Phys. Rev. Lett. 95, 138102 (2005)

    CrossRef  ADS  Google Scholar 

  20. G. M. Torrie, J. P. Valleau: J. Comput. Phys. 23, 187 (1977)

    CrossRef  ADS  Google Scholar 

  21. B. A. Berg, T. Neuhaus: Phys. Lett. B 267, 249 (1991)

    CrossRef  ADS  Google Scholar 

  22. A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, P. N. Vorontsov-Velyaminov: J. Chem. Phys. 96, 1776 (1992); E. Marinari, G. Parisi: Europhys. Lett. 19, 451 (1992)

    Google Scholar 

  23. U. H. E. Hansmann, Y. Okamoto: J. Comp. Chem. 14, 1333 (1993)

    CrossRef  Google Scholar 

  24. U. H. E. Hansmann, Y. Okamoto, F. Eisenmenger: Chem. Phys. Lett. 259, 321 (1996)

    CrossRef  ADS  Google Scholar 

  25. A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett 61, 2635 (1988); A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 63, 1658(E) (1989); and references given in the erratum

    Google Scholar 

  26. F. Wang, D. P. Landau: Phys. Rev. Lett. 86, 2050 (2001)

    CrossRef  ADS  Google Scholar 

  27. U. H. E. Hansmann, Y. Okamoto: J. Chem. Phys. 110, 1267 (1999); U. H. E. Hansmann, Y. Okamoto: J. Chem. Phys. 111, 1339(E) (1999)

    Google Scholar 

  28. Y. Peng, U. H. E. Hansmann: Phys. Rev. E 68, 041911 (2003)

    CrossRef  ADS  Google Scholar 

  29. Y. Duan, P. A. Kollman: Science 282, 740 (1998)

    CrossRef  ADS  Google Scholar 

  30. C. J. McKnight, D. S. Doehring, P. T. Matsudaria, P. S. Kim: J. Mol. Biol. 260, 126 (1996)

    CrossRef  Google Scholar 

  31. L. Wesson, D. Eisenberg: Protein Sci. 1, 227 (1992)

    CrossRef  Google Scholar 

  32. C.-Y. Lin, C.-K. Hu, U. H. E. Hansmann: Proteins 52, 436 (2003)

    CrossRef  Google Scholar 

  33. H. Gouda, H. Torigoe, A. Saito, M. Sato, Y. Arata, I. Shimada: Biochemistry 31, 9665 (1992)

    CrossRef  Google Scholar 

  34. G. Favrin, A. Irbäck, S. Wallin: Proteins 47, 99 (2002)

    CrossRef  Google Scholar 

  35. J. Lee, A. Liwo, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 96, 2025 (1999)

    CrossRef  ADS  Google Scholar 

  36. A. Ghosh, R. Elber, H. A. Scheraga: Proc. Natl. Acad. Sci. USA 99, 10394 (2002)

    CrossRef  ADS  Google Scholar 

  37. E. M. Boczko, Ch. L. Brooks, III: Science 269, 393 (1995)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansmann, U.H. (2008). All-Atom Simulations of Proteins. In: Rugged Free Energy Landscapes. Lecture Notes in Physics, vol 736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74029-2_11

Download citation