Advertisement

A Novel Approach to Efficient Monte-Carlo Localization in RoboCup

  • Patrick Heinemann
  • Jürgen Haase
  • Andreas Zell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4434)

Abstract

Recently, efficient self-localization methods have been developed, among which probabilistic Monte-Carlo localization (MCL) is one of the most popular. However, standard MCL algorithms need at least 100 samples to compute an acceptable position estimation. This paper presents a novel approach to MCL that uses an adaptive number of samples that drops down to a single sample if the pose estimation is sufficiently accurate. Experiments show that the method remains in this efficient single sample tracking mode for more than 90% of the cycles.

Keywords

Tracking Mode Line Point Iterative Improvement Omnidirectional Image Omnidirectional Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Jong, F., Caarls, J., Bartelds, R., Jonker, P.: A Two-Tiered Approach to Self-Localization. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 405–410. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Enderle, S., Ritter, M., Fox, D., Sablatnög, S., Kraetzschmar, G., Palm, G.: Vision-based Localization in RoboCup Environments. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 291–296. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. In: Proceedings of the National Conference on Artificial Intelligence, pp. 343–349 (1999)Google Scholar
  4. 4.
    Gutmann, J., Weigel, T., Nebel, B.: Fast, Accurate, and Robust Self-Localization in Polygonal Environments. In: IROS 1999. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1999)Google Scholar
  5. 5.
    Heinemann, P., Rückstieß, T., Zell, A.: Fast and Accurate Environment Modelling using Omnidirectional Vision. In: Dynamic Perception 2004, Infix (2004)Google Scholar
  6. 6.
    Iocchi, L., Nardi, D.: Self-Localization in the RoboCup Environment. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup-99: Robot Soccer World Cup III. LNCS (LNAI), vol. 1856, pp. 318–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Marques, C., Lima, P.: A Localization Method for a Soccer Robot Using a Vision-Based Omni-Directional Sensor. In: Proceedings of EuRoboCup Workshop 2000 (2000)Google Scholar
  8. 8.
    Menegatti, E., Pretto, A., Pagello, E.: A New Omnidirectional Vision Sensor for Monte-Carlo Localization. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 97–109. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Röfer, T., Jüngel, M.: Vision-Based Fast and Reactive Monte-Carlo Localization. In: Proceedings of the 2003 IEEE International Conference on Robotics & Automation, pp. 856–861. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  10. 10.
    Röfer, T., Jüngel, M.: Fast and Robust Edge-Based Localization in the Sony Four-Legged Robot League. In: RoboCup-2003: Robot Soccer World Cup VII. LNCS, vol. 3020, pp. 262–273. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Utz, H., Neubeck, A., Mayer, G., Kraetzschmar, G.: Improving Vision-Based Self-localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 25–40. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    von Hundelshausen, F., Schreiber, M., Wiesel, F., Liers, A., Rojas, R.: MATRIX: A force field pattern matching method for mobile robots. Technical Report B-08-03, Free University of Berlin (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Patrick Heinemann
    • 1
  • Jürgen Haase
    • 1
  • Andreas Zell
    • 1
  1. 1.Wilhelm-Schickard-Institute, Department of Computer Architecture, University of Tübingen, Sand 1, 72076 TübingenGermany

Personalised recommendations