Advertisement

Proprioceptive Motion Modeling for Monte Carlo Localization

  • Jan Hoffmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4434)

Abstract

This paper explores how robot localization can be improved and made more reactive by using an adaptive motion model based on proprioception. The motion model of mobile robots is commonly assumed to be constant or a function of the robot speed. We extend this model by explicitly modeling possible states of locomotion caused by interactions of the robot with its environment, such as collisions. The motion model thus behaves according to which state the robot is in. State transitions are based on proprioception, which in our case describes how well the robot’s limbs are able to follow their respective motor commands. The extended, adaptive motion model yields a better, more reactive model of the current robot belief, which is shown in experiments. The improvement is due to the fact that the motion noise no longer has to subsume any possible outcome of actions including failure. In contrast, a clear distinction between failure and normal, desired operation is possible, which is reflected in the motion model.

Keywords

Probability Density Function Mobile Robot Particle Distribution Collision Detection Translational Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Behnke, S., Müller, J., Schreiber, M.: Toni: A soccer playing humanoid robot. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Clark, J.E., Cham, J.G., Bailey, S.A., Froehlich, E.M., Nahata, P.K., Full, R.J., Cutkosky, M.R.: Biomimetic design and fabrication of a hexapedal running robot. In: ICRA. Proc. of the 2001 Intl. Conference Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  3. 3.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: ICRA. Proc. of the 1999 IEEE Intl. Conference on Robotics and Automation, vol. 2, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  4. 4.
    Düffert, U., Hoffmann, J.: Reliable and precise gait modeling for a quadruped robot. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, J., Göhring, D.: Sensor-actuator-comparison as a basis for collision detection for a quadruped robot. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Hoffmann, J., Spranger, M., Göhring, D., Jüngel, M.: Exploiting the unexpected: Negative evidence modeling and proprioceptive motion modeling for improved markov localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hornby, G., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with Aibo. In: ICRA. Proc. of the 2000 Intl. Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  8. 8.
    Kwok, C., Fox, D.: Map-based multiple model tracking of a moving object. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Dario, C.L.P., Guglielmelli, E.: Humanoids and personal robots: design and experiments. Journal of Robotic Systems 18(2) (2001)Google Scholar
  10. 10.
    Quinlan, M.J., Murch, C.L., Middleton, R.H., Chalup, S.K.: Traction monitoring for collision detection with legged robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Röfer, T., Brunn, R., Dahm, I., Hebbel, M., Hoffmann, J., Jüngel, M., Laue, T., Lötzsch, M., Nistico, W., Spranger, M.: GermanTeam 2004: The German national RoboCup team. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge, MA, USA (2005)zbMATHGoogle Scholar
  13. 13.
    Vail, D., Veloso, M.: Learning from accelerometer data on a legged robot. In: IAV-2004. Proc. of the 5th IFAC Symp. on Intelligent Autonomous Vehicles (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jan Hoffmann
    • 1
  1. 1.Institut für Informatik, Humboldt-Universität zu BerlinGermany

Personalised recommendations