Skip to main content

Formation and Evolution of Terrestrial Planets in Protoplanetary and Debris Disks

  • Chapter
Exoplanets

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

This review discusses the properties of protoplanetary disks in the context of terrestrial planet formation, emphasising the general pattern of planet formation and evidence for similar patterns of evolution, and also for the diversity of starting points and hence probable conclusions. In addition, the process of terrestrial planet formation extends well beyond the protoplanetary stage, and produces disks of debris from the planetesimal collisions. The observed behaviour of these debris disks can test many hypotheses regarding the evolution of the Solar System. Debris disks also let us probe many different examples of how planetary systems generally like ours evolve (there are nearly 150 examples known within 50pc).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnor, C. & E. Asphaug 2004, Accretion efficiency during planetary collisions, ApJL, 613, L157

    Article  ADS  Google Scholar 

  • Alexander, R. D., C. J. Clarke, & J. E. Pringle 2006a, Photoevaporation of protoplanetary discs — I Hydrodynamic models, MNRAS, 369, 216

    Article  ADS  Google Scholar 

  • Alexander, R. D., C. J. Clarke, & J. E. Pringle 2006b, Photoevaporation of protoplanetary disks — II. Evolutionary models and observable properties, MNRAS, 369, 229

    Article  ADS  Google Scholar 

  • Andrews, S. M. & J. P. Williams 2005, Circumstellar dust disks in Taurus-Auriga: The submillimeter perspective, ApJ, 631, 1134

    Article  ADS  Google Scholar 

  • Andrews, S. M. & J. P. Williams 2007, High-resolution submillimeter constraints on circumstellar disk structure, ApJ, 659, 705

    Article  ADS  Google Scholar 

  • Ardila, D. R. et al 2005, A dynamical simulation of the debris disk around HD 141569A, ApJ, 627, 986

    Article  ADS  Google Scholar 

  • Armitage, P. J. 2007, Lecture notes on the formation and early evolution of planetary systems, astro-ph/0701485, recommended review

    Google Scholar 

  • Aumann, H. H. et al 1984, Discovery of a shell around Alpha Lyrae, ApJL, 278, L23

    Article  ADS  Google Scholar 

  • Backman, D. E. & F. Paresce 1993, Main-sequence stars with circumstellar solid material — The VEGA phenomenon, in Protostars and Planets III, (University of Arizona Press, Tucson, AZ) pp. 1253–1304, dated but classic review

    Google Scholar 

  • Backman, D. E., A. Dasgupta, & R. E. Stencel 1995, Model of a Kuiper Belt small grain population and resulting far-infrared emission, ApJL, 450, L35

    Article  ADS  Google Scholar 

  • Beall, J. H. 1987, The observational appearance of protostellar accretion disks, ApJ, 316, 227

    Article  ADS  Google Scholar 

  • Beichman, C. A. et al 2005, An excess due to small grains around the nearby K0 V star HD 69830: Asteroid or cometary debris?, ApJ, 626, 1061

    Article  ADS  Google Scholar 

  • Beichman, C. A. et al 2006, IRS spectra of solar-type stars: A search for asteroid belt analogs, ApJ, 639, 1166

    Article  ADS  Google Scholar 

  • Benz, W. & E. Asphaug 1999, Catastrophic disruptions revisited, Icarus, 142, 5

    Article  ADS  Google Scholar 

  • Boley, A. C. et al 2006, The thermal regulation of gravitational instabilities in protoplanetary disks. III. Simulations with radiative cooling and realistic opacities, ApJ, 651, 517

    Article  ADS  Google Scholar 

  • Bonatto, C., E. Bica, S. Ortolani, & B. Barbuy 2006, Detection of KS-excess stars in the 14 Myr open cluster NGC 4755, A&A, 453, 121

    Article  ADS  Google Scholar 

  • Boss, A. P. 2005, Evolution of the solar nebula. VII. Formation and survival of protoplanets formed by disk instability, ApJ, 629, 535

    Article  ADS  Google Scholar 

  • Brown, M. E., K. M. Barkume, D. Ragozzine, & E. L. Schaller 2007, A collisional family of icy objects in the Kuiper Belt, Nature, 446, 294

    Article  ADS  Google Scholar 

  • Bryden, G. et al 2006, Frequency of debris disks around solar-type stars: First results from a Spitzer/MIPS survey, ApJ, 636, 1098

    Article  ADS  Google Scholar 

  • Bryden, G. et al 2007, Planets and debris disks: Results from a Spitzer/MIPS search for IR excess, submitted to ApJ

    Google Scholar 

  • Burns, J. A., P. L. Lamy, & S. Soter 1979, Radiation forces on small particles in the solar system, Icarus, 40, 1, recommended review

    Article  ADS  Google Scholar 

  • Burrows, C. J. et al 1996, Hubble Space Telescope observations of the disk and jet of HH 30, ApJ, 473, 437

    Article  ADS  Google Scholar 

  • Canup, R. M. 2004, Dynamics of lunar formation, ARAA, 42, 441, recommended review

    Article  ADS  Google Scholar 

  • Caroff, L., L. Juleen Moon, D. Backman, & E. Praton 2004, Debris disks and the formation of planets: A symposium in memory of Fred Gillett, ASP Conf. Series, No. 324

    Google Scholar 

  • Carpenter, J. M., E. E. Mamajek, L. A. Hillenbrand, & M. R. Meyer 2006, Evidence for mass-dependent circumstellar disk evolution in the 5 Myr old Upper Scorpius OB Association, ApJL, 651, L49

    Article  ADS  Google Scholar 

  • Chambers, J. E. 2001, Making more terrestrial planets, Icarus, 152, 205

    Article  ADS  Google Scholar 

  • Chambers, J. E. 2004, Planetary accretion in the inner Solar System, Earth and Planetary Science Letters, 223, 241, recommended review

    Article  ADS  Google Scholar 

  • Chen, C. H. & M. Jura 2001, A possible massive asteroid belt around ζ Leporis, ApJL, 560, L171

    Article  ADS  Google Scholar 

  • Chen, C. H., M. Jura, K. D. Gordon, & M. Blaylock 2005, A Spitzer study of dusty disks in the Scorpius-Centaurus OB Association, ApJ, 623, 493

    Article  ADS  Google Scholar 

  • Chen, C. H. et al. 2006, Spitzer IRS spectroscopy of IRAS-discovered debris disks, ApJS, 166, 351

    Article  ADS  Google Scholar 

  • Chiang, E. I. & P. Goldreich 1997, Spectral energy distributions of T Tauri Stars with passive circumstellar disks, ApJ, 490, 368

    Article  ADS  Google Scholar 

  • Clampin, M. et al. 2003, Hubble Space Telescope ACS coronagraph imaging of the circumstellar disk around HD 141569A, AJ, 126, 385

    Article  ADS  Google Scholar 

  • Close, L. M. et al 1998, Adaptive optics imaging of the circumbinary disk around the T Tauri binary UY Aurigae: Estimates of the binary mass and circumbinary dust grain size distribution, ApJ, 499, 883

    Article  ADS  Google Scholar 

  • Currie, T. et al 2007a, Spitzer IRAC and JHKS observations of h and χ Per: Constraints on protoplanetary disk and massive cluster evolution at ∼ 107 years, ApJ, 659, 599

    Article  ADS  Google Scholar 

  • Currie, T. et al 2007b, Terrestrial zone debris disk candidates in h and χ Persei, ApJL, 663, L105

    Article  ADS  Google Scholar 

  • Dahm, S. E. & L. A. Hillenbrand 2007, Spitzer observations of NGC 2362: Primordial disks at 5 Myr, AJ, 133, 2072

    Article  ADS  Google Scholar 

  • Dohnanyi, J. W. 1969, Collisional models of asteroids and their debris, J. Geophys. Res., 74, 2531

    Article  ADS  Google Scholar 

  • Dominik, C. & G. Decin 2003, Age dependence of the Vega Phenomenon: Theory, ApJ, 598, 626, recommended for an overview of debris disk evolution

    Article  ADS  Google Scholar 

  • Dominik, C. & A. G. G. M. Tielens 1997, The physics of dust coagulation and the structure of dust aggregates in space ApJ, 480, 647

    Article  ADS  Google Scholar 

  • Dominik, C., J. Blum, J. N. Cuzzi, & G. Wurm 2007, Growth of dust as the initial step toward planet formation, in Protostars & Planets V, pp 783–800, recommended review

    Google Scholar 

  • Duchêne, G., J.-L. Monin, J. Bouvier, & F. Ménard 1999, Accretion in Taurus PMS binaries: a spectroscopic study, A&A, 351, 954

    ADS  Google Scholar 

  • Dullemond, C. P., C. Dominik, & A. Natta 2001, Passive irradiated circumstellar disks with an inner hole, ApJ, 560, 957

    Article  ADS  Google Scholar 

  • Dullemond, C. P., D. Hollenbach, I. Kamp, & P. D’Alessio 2007, Models of the structure and evolution of protoplanetary disks, in Protostars and Planets V, pp 555–572, recommended review

    Google Scholar 

  • Eisner, J. A. & J. M. Carpenter 2006, Massive protoplanetary disks in the Trapezium region, ApJ, 641, 1162

    Article  ADS  Google Scholar 

  • Fischer, D. A. & J. Valenti 2005, The planet-metallicity connection, ApJ, 622, 1102

    Article  ADS  Google Scholar 

  • Freistetter, F., A. V. Krivov, & T. Löhne 2007, Planets of β Pictoris revisited, A&A, 466, 389

    Article  ADS  Google Scholar 

  • Garaud, P. & D. N. C. Lin 2004, On the evolution and stability of a protoplanetary disk dust layer, ApJ, 608, 1050

    Article  ADS  Google Scholar 

  • Gautier, T. N. et al 2007, Far infrared properties of M dwarfs, ApJ, 667, 527

    Article  ADS  Google Scholar 

  • Golimowski, D. A. et al 2006, Hubble Space Telescope ACS multiband coronagraphic imaging of the debris disk around β Pictoris, AJ, 131, 3109

    Article  ADS  Google Scholar 

  • Gomes, R., H. F. Levison, K. Tsiganis, & A. Morbidelli 2005, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature, 435, 466

    Article  ADS  Google Scholar 

  • Gorlova, N. et al 2004, New debris-disk candidates: 24 micron stellar excesses at 100 Million years, ApJS, 154, 448

    Article  ADS  Google Scholar 

  • Gorlova, N. et al 2006, Spitzer 24 µm survey of debris disks in the Pleiades, ApJ, 649, 1028

    Article  ADS  Google Scholar 

  • Gorlova, N., Z. Balog, G. H. Rieke, J. Muzerolle, K. Y. L. Su, V. D. Ivanov, & E. T. Young 2007, Debris disks in NGC 2547, ApJ, 670, 516

    Article  ADS  Google Scholar 

  • Grasdalen, G. L., S. E. Strom, K. M. Strom, R. W. Capps, D. Thompson, & M. Castelaz 1984, High spatial resolution IR observations of young stellar objects — A possible disk surrounding HL Tauri, ApJL, 283, L57

    Article  ADS  Google Scholar 

  • Greaves, J. S., M. C. Wyatt, W. S. Holland, & W. R. F. Dent 2004, The debris disc around Ï„ Ceti: a massive analogue to the Kuiper Belt, MNRAS, 351L, 54

    Article  ADS  Google Scholar 

  • Greaves, J. S. et al 2005, Structure in the ∈ Eridani debris disk, ApJL, 619, L187

    Article  ADS  Google Scholar 

  • Grigorieva, A., P. Artymowicz, & Ph. Thébault 2007, Collisional dust avalanches in debris discs, A&A, 461, 537

    Article  ADS  Google Scholar 

  • Grogan, K., S. F. Dermott, & D. D. Durda 2001, The size-frequency distribution of the zodiacal cloud: Evidence from the Solar System dust bands, Icarus, 152, 251

    Article  ADS  Google Scholar 

  • Gullbring, E., L. Hartmann, C. Briceño, & N. Calvet 1998, Disk accretion rates for T Tauri stars, ApJ, 492, 323

    Article  ADS  Google Scholar 

  • Habing, H. et al 2001, Incidence and survival of remnant disks around main-sequence stars, A&A, 365, 545

    Article  ADS  Google Scholar 

  • Haghighipour, N. & A. P. Boss 2003, On pressure gradients and rapid migration of solids in a nonuniform solar nebula, ApJ, 583, 996

    Article  ADS  Google Scholar 

  • Haisch, K. E., E. A. Lada, & C. J. Lada 2001, Disk frequencies and lifetimes in young clusters, ApJL, 553, L153

    Article  ADS  Google Scholar 

  • Haisch, K. E., R. Jayawardhana, & A. Alves 2005, Constraints on inner disk evolution timescales: A disk census of the η Chamaeleontis young cluster, ApJL, 627, L57

    Article  ADS  Google Scholar 

  • Haisch, K. E., M. Barsony, M. E. Ressler, & T. P. Greene 2006, Mid-infrared observations of class I/flat-spectrum systems in six nearby molecular clouds, AJ, 132, 2675

    Article  ADS  Google Scholar 

  • Hartigan, P., K. M. Strom, & S. E. Strom 1994, Are wide pre-main-sequence binaries coeval?, ApJ, 427, 961

    Article  ADS  Google Scholar 

  • Hartigan, P. & S. J. Kenyon 2003, A spectroscopic survey of subarcsecond binaries in the Taurus-Auriga dark cloud with the Hubble Space Telescope, ApJ, 583, 334

    Article  ADS  Google Scholar 

  • Hayashi, C. 1981, Formation of the planets, in Fundamental Problems in the Theory of Stellar Evolution, (D. Sugimoto et al. eds.), IAU Symp. 93 (Reidel: Dordrecht), pp 113–126

    Google Scholar 

  • Hernandez, J. et al 2007, Spitzer Space Telescope study of disks in the young σ Orionis cluster, ApJ, 662, 1067

    Article  ADS  Google Scholar 

  • Hildebrand, R. H. 1983, The determination of cloud masses and dust characteristics from submillimetre thermal emission, QJRAS, 24, 267

    ADS  Google Scholar 

  • Hillenbrand, L. A. 2002, Young circumstellar disks and their evolution: A review, astro-ph/0210520v1, recommended review

    Google Scholar 

  • Hillenbrand, L. A. 2005, Observational constraints on dust disk lifetimes: Implications for planet formation, astro-ph/0511083, recommended review

    Google Scholar 

  • Hogerheijde, M. R. 2001, From infall to rotation around young stellar objects: A transitional phase with a 2000 AU radius contracting disk?, ApJ, 553, 618

    Article  ADS  Google Scholar 

  • Holland, W. S. et al 1998, Submillimetre images of dusty debris around nearby stars, Nature, 392, 788

    Article  ADS  Google Scholar 

  • Holland, W. S. et al 2003, Submillimeter observations of an asymmetric dust disk around Fomalhaut, ApJ, 582, 1141

    Article  ADS  Google Scholar 

  • Kalas, P., J. R. Graham, & M. Clampin 2005, A planetary system as the origin of structure in Fomalhaut’s dust belt, Nature, 435, 1067

    Article  ADS  Google Scholar 

  • Karmann, C., H. Beust, & J. Klinger 2003, The physico-chemical history of falling evaporating bodies around β Pictoris: The sublimation of refractory material, A&A, 409, 347

    Article  ADS  Google Scholar 

  • Kenyon, S. J. & B. C. Bromley 2004, Detecting the dusty debris of terrestrial planet formation, ApJL, 602, L133

    Article  ADS  Google Scholar 

  • Kenyon, S. J. & B. C. Bromley 2006, Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth, AJ, 131, 1837

    Article  ADS  Google Scholar 

  • Kenyon, S. J. & L. Hartmann 1987, Spectral energy distributions of T Tauri stars — Disk flaring and limits on accretion, ApJ, 323, 714

    Article  ADS  Google Scholar 

  • Kim, J. S. et al 2005, Formation and evolution of planetary systems: Cold outer disks associated with Sun-like stars, ApJ, 632, 659

    Article  ADS  Google Scholar 

  • Kitamura, Y., M. Momose, S. Yokogawa, R. Kawabe, M. Tamura, & S. Ida 2002, Investigation of the physical properties of protoplanetary disks around T Tauri stars by a 1 arcsecond imaging survey: Evolution and diversity of the disks in their accretion stage, ApJ, 581, 357

    Article  ADS  Google Scholar 

  • Krist, J. E. et al 2005, Hubble Space Telescope ACS images of the GG Tauri circumbinary disk, AJ, 130, 2778

    Article  ADS  Google Scholar 

  • Krivov, A. V., I. Mann, & N. A. Krivova 2000, Size distributions of dust in circumstellar debris disks, A&A, 362, 1127

    ADS  Google Scholar 

  • Krivov, A. V., M. Queck, T. Löhne, & M. Sremcević 2007, On the nature of clumps in debris disks, A&A, 462, 199

    Article  ADS  Google Scholar 

  • Lada, C. J. et al 2006, Spitzer observations of IC 348: The disk population at 2–3 Million years, AJ, 131, 1574

    Article  ADS  Google Scholar 

  • Leinhardt, Z. M., D. C. Richardson, & T. Quinn 2000, Direct N-body simulations of rubble pile collisions, Icarus, 146, 133

    Article  ADS  Google Scholar 

  • Liou, J.-C. & H. A. Zook 1999, Signatures of the giant planets imprinted on the Edgeworth-Kuiper Belt dust disk, AJ, 118, 580, recommended for a discussion of planetary disk clearing

    Article  ADS  Google Scholar 

  • Lovis, C. et al 2006, An extrasolar planetary system with three Neptune-mass planets, Nature, 441, 305

    Article  ADS  Google Scholar 

  • Mariñas, N., C. M. Telesco, R. S. Fisher, C. Packham, & J. T. Radomski 2006, Mid-infrared imaging of the Herbig Ae star AB Aurigae: Extended emission on several scales, ApJ, 653, 1353

    Article  ADS  Google Scholar 

  • Marsh, K. A., C. D. Dowell, T. Velusamy, K. Grogan, & C. A. Beichman 2006, Images of the Vega dust ring at 350 and 450 µm: New clues to the trapping of multiple-sized dust particles in planetary resonances, ApJL, 646, L77

    Article  ADS  Google Scholar 

  • Marshall, J. R., T. B. Sauke, & J. N. Cuzzi 2005, Microgravity studies of aggregation in particulate clouds, Geophys. Res. Letters, 32, Cite ID 11202

    Google Scholar 

  • Megeath, S. T., L. Hartmann, K. L. Luhman, & G. G. Fazio 2005, Spitzer/IRAC Photometry of the η Chameleontis Association, ApJL, 634, L113

    Article  ADS  Google Scholar 

  • Metchev, S. A., J. A. Eisner, L. A. Hillenbrand, & S. Wolf 2005, Adaptive optics imaging of the AU Microscopii circumstellar disk: Evidence for dynamical evolution, ApJ, 622, 451

    Article  ADS  Google Scholar 

  • Moerchen, M. M., C. M. Telesco, C. Packham, & T. J. J. Kehoe 2007, Mid-infrared resolution of a 3 AU radius debris disk around Ï‚ Leporis, ApJL, 655, L109

    Article  ADS  Google Scholar 

  • Moro-Martín, A. & R. Malhotra 2005, Dust outflows and inner gaps generated by massive planets in debris disks, ApJ, 633, 1150

    Article  ADS  Google Scholar 

  • Moro-Martín, A., S. Wolf, & R. Malhotra, 2005, Signatures of planets in spatially unresolved debris disks, ApJ, 621, 1079

    Article  ADS  Google Scholar 

  • Moro-Martín, A. et al 2007, Are debris disks and massive planets correlated?, ApJ, 658, 1312

    Article  ADS  Google Scholar 

  • Muzerolle, J., C. Calvet, L. Hartmann, & P. D’Alessio 2003, Unveiling the inner disk structure of T Tauri stars, ApJL, 597, L149

    Article  ADS  Google Scholar 

  • Muzerolle, J., P. D’Alessio, N. Calvet, L. Hartmann 2004, Magnetospheres and disk accretion in Herbig Ae/Be stars, ApJ, 617, 406

    Article  ADS  Google Scholar 

  • Nagasawa, M., D. N. C. Lin, & E. Thommes 2005, Dynamical Shake-up of planetary systems. I. Embryo trapping and induced collisions by the sweeping secular resonance and embryo-disk tidal interaction, ApJ, 635, 578

    Article  ADS  Google Scholar 

  • Nagasawa, M., E. W. Thommes, S. J. Kenyon, B. C. Bromley, & D. N. C. Lin 2007, The diverse origins of terrestrial-planet systems, in Protostars & Planets V, pp 639–654, recommended review

    Google Scholar 

  • Nesvorný, D., W. F. Bottke, L. Dones, & H. F. Levison 2002, The recent breakup of an asteroid in the main-belt region, Nature, 417, 720

    Article  ADS  Google Scholar 

  • Nesvorný, D., W. F. Bottke, H. F. Levison, & L. Dones 2003, Recent origin of the Solar System dust bands, ApJ, 591, 486

    Article  ADS  Google Scholar 

  • Okamoto, Y. et al. 2004, An early extrasolar planetary system revealed by planetesimal belts in β Pictoris, Nature, 431, 660

    Article  ADS  Google Scholar 

  • Oliveira, J. M., R. D. Jeffries, J. Th. van Loon, & M. T. Rushton 2006, Circumstellar discs in the young Σ Orionis cluster, MNRAS, 369, 272

    Article  ADS  Google Scholar 

  • Padgett, D. L. et al 1999, Hubble Space Telescope/NICMOS imaging of disks and envelopes around very young stars, AJ, 117, 1490

    Article  ADS  Google Scholar 

  • Padgett, D. L. et al 2006, The Spitzer c2d survey of weak-line T Tauri stars. I. Initial results, ApJ, 645, 1283

    Article  ADS  Google Scholar 

  • Plavchan, P., M. Jura, & S. J. Lipscy 2005, Where are the M dwarf disks older than 10 Million years?, ApJ, 631, 1161

    Article  ADS  Google Scholar 

  • Poppe, T., J. Blum, & T. Henning 2000a, Analogous experiments on the stickiness of micron-sized preplanetary dust, ApJ, 533, 454

    Article  ADS  Google Scholar 

  • Poppe, T., J. Blum, & T. Henning 2000b, Experiments on collisional grain charging of micron-sized preplanetary dust, ApJ, 533, 472

    Article  ADS  Google Scholar 

  • Prato, L. & M. Simon 1997, Are both stars in a classic T Tauri binary classic T Tauri stars?, ApJ, 474, 455

    Article  ADS  Google Scholar 

  • Qi, C., J. E. Kessler, D. W. Koerner, A. I. Sargent, & G. A. Blake 2003, Continuum and CO/HCO+ emission from the disk around the T Tauri star LkCa 15, ApJ, 597, 986

    Article  ADS  Google Scholar 

  • Rhee, J. H., I. Song, B. Zuckerman, & M. McElwain 2007, Characterization of dusty debris disks: the IRAS and Hipparcos catalogs, ApJ, 660, 1556

    Article  ADS  Google Scholar 

  • Rice, W. K. M., G. Lodato, J. E. Pringle, P. J. Armitage, & I. A. Bonnell 2004, Accelerated planetesimal growth in self-gravitating protoplanetary discs, MNRAS, 355, 543

    Article  ADS  Google Scholar 

  • Rieke, G. H. et al 2005, Decay of planetary debris disks, ApJ, 620, 1010

    Article  ADS  Google Scholar 

  • Roberge, Aki, A. J. Weinberger, & E. M. Malumuth 2005, Spatially resolved spectroscopy and coronagraphic imaging of the TW Hydrae circumstellar disk, ApJ, 622, 1171

    Article  ADS  Google Scholar 

  • Semenov, D., Ya. Pavlyuchenkov, K. Schreyer, T. Henning, C. Dullemond, & A. Bacmann 2005, Millimeter observations and modeling of the AB Aurigae system, ApJ, 621, 853

    Article  ADS  Google Scholar 

  • Sicilia-Aguilar, A. et al 2006, Disk evolution in Cep OB2: Results from the Spitzer Space Telescope, ApJ, 638, 897

    Article  ADS  Google Scholar 

  • Siegler, N. et al 2007, Spitzer 24 μm observations of open cluster IC 2391 and debris disk evolution of FGK stars, ApJ, 654, 580

    Article  ADS  Google Scholar 

  • Silverstone, M. D. et al 2006, Formation and evolution of planetary systems (FEPS): Primordial warm dust evolution from 3 to 30 Myr around Sun-like stars, ApJ, 639, 1138

    Article  ADS  Google Scholar 

  • Song, I., B. Zuckerman, A. J. Weinberger, & E. E. Becklin 2005, Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star, Nature, 436, 363

    Article  ADS  Google Scholar 

  • Spangler, C., A. I. Sargent, M. D. Silverstone, E. E. Becklin, & B. Zuckerman 2001, Dusty debris around solar-type stars: Temporal disk evolution, ApJ, 555, 932

    Article  ADS  Google Scholar 

  • Stapelfeldt, K. R., J. E. Krist, F. Menard, J. Bouvier, D. L. Padgett, & C. J. Burrows 1998, An edge-on circumstellar disk in the young binary system HK Tauri, ApJL, 502, L65

    Article  ADS  Google Scholar 

  • Stapelfeldt, K. R. et al 2004, First look at the Fomalhaut debris disk with the Spitzer Space Telescope, ApJS, 154, 458

    Article  ADS  Google Scholar 

  • Su, K. Y. L. et al 2005, The Vega debris disk: A surprise from Spitzer, ApJ, 628, 487

    Article  ADS  Google Scholar 

  • Su, K. Y. L. et al 2006, Debris disk evolution around A stars, ApJ, 653, 675

    Article  ADS  Google Scholar 

  • Tanga, P., S. J. Weidenschilling, P. Michel, & D. C. Richardson 2004, Gravitational instability and clustering in a disk of planetesimals, A&A, 427, 1105

    Article  ADS  MATH  Google Scholar 

  • Telesco, C. M. et al 2005, Mid-infrared images of β Pictoris and the possible role of planetesimal collisions in the central disk, Nature, 433, 133

    Article  ADS  Google Scholar 

  • Terebey, S., F. H. Shu, & P. M. Cassen 1984, The collapse of the cores of slowly rotating isothermal clouds, ApJ, 286, 529

    Article  ADS  Google Scholar 

  • Trilling, D. E. et al 2007a, Debris disks around F, G, and K stars, ApJ, in press

    Google Scholar 

  • Trilling, D. E. et al 2007b, Debris disks in main-sequence binary systems, ApJ, 658, 1289

    Article  ADS  Google Scholar 

  • Wahhaj, Z., D. W. Koerner, D. E. Backman, M. W. Werner, E. Serabyn, M. E. Ressler, & D. C. Lis 2005, Radial distribution of dust grains around HR 4796A, ApJ, 618, 385

    Article  ADS  Google Scholar 

  • Wahhaj, Z., D. W. Koerner, & A. I. Sargent 2007, High-resolution imaging of the dust disk around 49 Ceti, ApJ, 661, 368

    Article  ADS  Google Scholar 

  • Watson, A. M., K. R. Stapelfeldt, K. Wood, & F. Ménard 2007, Multiwavelength imaging of young stellar object disks: Toward an understanding of disk structure and dust evolution, in Protostars & Planets V, pp 523–538, recommended review

    Google Scholar 

  • Weidenschilling, S. J. 1977, The distribution of mass in the planetary system and solar nebula, Astrophy. Sp. Sci., 51, 153

    Article  ADS  Google Scholar 

  • Weidenschilling, S. J., D. Spaute, D. R. Davis, F. Marzari, & K. Ohtsuki 1997, Accretional evolution of a planetesimal swarm, Icarus, 128, 429

    Article  ADS  Google Scholar 

  • Wilner, D. J., M. J. Holman, M. J. Kuchner, & P. T. P. Ho 2002, Structure in the dusty debris around Vega, ApJL, 569, L115

    Article  ADS  Google Scholar 

  • Wyatt, M. C. et al 2007a, Steady-state evolution of debris disks around A stars, ApJ, 663, 365

    Article  ADS  Google Scholar 

  • Wyatt, M. C., R. C. Smith, J. S. Greaves, C. A. Beichman, G. Bryden, & C. M. Lisse 2007b, Transience of hot dust around Sun-like stars, ApJ, 658, 569

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Rieke, G.H. (2008). Formation and Evolution of Terrestrial Planets in Protoplanetary and Debris Disks. In: Mason, J.W. (eds) Exoplanets. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74008-7_4

Download citation

Publish with us

Policies and ethics