Skip to main content

The Various Effects of Insects on Ecosystem Functioning

  • Chapter

Part of the Ecological Studies book series (ECOLSTUD,volume 173)

Summary

Insects represent a dominant component of biodiversity in most terrestrial ecosystems yet they have largely been neglected in studies on the role of biodiversity in nutrient cycling, or, more generally, the functioning of ecosystems. The scarcity of manipulative studies on the role of insects in ecosystem processes contrasts with the expert knowledge and large body of research already available, in particular in the field of insect herbivory. Insects are likely to play a key role in mediating the relationship between plants and ecosystem processes by influencing the physiology, activity and population dynamics of plants. The aim of this book is two-fold: (1) to summarize the effects that insects have on ecosystem functioning, focusing mainly, but not exclusively, on herbivorous insects. Authors with extensive experience in the field of plant—insect interactions will discuss the importance of insects in ecosystem functioning; and (2) to provide a detailed discussion of the advantages and disadvantages of various techniques of manipulating insect herbivory. Thus, the book aims to provide both a theoretical basis and practical advice for future manipulative studies on biodiversity—ecosystem functioning. This introductory chapter briefly summarizes the various effects of insects on ecosystem functioning and introduces the chapters in the various sections of this book.

Keywords

  • Ecosystem Function
  • Nutrient Cycling
  • Insect Herbivory
  • Ecosystem Functioning
  • Gypsy Moth

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-74004-9_1
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-74004-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson WG, McCrea KD (1986) Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 68: 174–180

    CrossRef  Google Scholar 

  • Agrawal AA, Karban R (1997) Domatia mediate plant–arthropod mutualism. Nature (Lond) 387: 562–563

    CAS  CrossRef  Google Scholar 

  • Bach CE (2001) Long-term effects of insect herbivory and sand accretion on plant succession on sand dunes. Ecology 82: 1401–1416

    CrossRef  Google Scholar 

  • Bachelet D, Hunt HW, Detling JK (1989) A simulation model of intraseasonal carbon and nitrogen dynamics of blue grama swards as influenced by above-and belowground grazing. Ecol Model 44: 231–252

    CAS  CrossRef  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95: 8113–8118

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baldwin IT, Preston CA (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208: 137–145

    CAS  CrossRef  Google Scholar 

  • Belovsky GE, Slade JB (2000) Insect herbivory accelerates nutrient cycling and increases plant production. Proc Natl Acad Sci USA 97: 14412–14417

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Blatt SE, Janmaat JA, Harmsen R (2001) Modelling succession to include a herbivore effect. Ecol Model 139: 123–136

    CrossRef  Google Scholar 

  • Bormann FH, Likens GE (1967) Nutrient cycling. Science 155: 424–429

    CAS  PubMed  CrossRef  Google Scholar 

  • Brown MJF (1997) Effects of harvester ants on plant species distribution and abundance in a serpentine grassland. Oecologia 112: 237–243

    CrossRef  Google Scholar 

  • Brown VK (1990) Insect herbivores, herbivory and plant succession. In: Gilbert F (ed) Insect life cycles. Springer, Berlin Heidelberg New York, pp 183–196

    CrossRef  Google Scholar 

  • Brown VK, Gange AC (1992) Secondary plant succession: how is it modified by insect herbivory? Vegetatio 101: 3–13

    CrossRef  Google Scholar 

  • Brown VK, Leijn M, Stinson CSA (1987) The experimental manipulation of insect herbivore load by the use of an insecticide (Malathion): the effect of application on plant growth. Oecologia 72: 377–381

    CrossRef  Google Scholar 

  • Brown VK, Jepsen M, Gibson CWD (1988) Insect herbivory: effects on early old field succession demonstrated by chemical exclusion methods. Oikos 52: 293–302

    CrossRef  Google Scholar 

  • Cain ML, Carson WP, Root RB (1991) Long-term suppression of insect herbivores increases the production and growth of Solidago-altissima rhizomes. Oecologia 88: 251–257

    CrossRef  Google Scholar 

  • Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature (Lond) 415: 426–429

    CAS  CrossRef  Google Scholar 

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in a agroecosystem. Ecol Lett 6: 857–865

    CrossRef  Google Scholar 

  • Carson WP, Root RB (2000) Herbivory and plant species coexistence: community regulation by an outbreaking phytophagous insect. Ecol Monogr 70: 73–99

    CrossRef  Google Scholar 

  • Chew RM (1974) Consumers as regulators of ecosystems: an alternative to energetics. Ohio J Sci 74: 359–370

    Google Scholar 

  • Christenson L, Lovett GM, Mitchell MJ, Groffman PM (2002) The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131: 444–452

    CrossRef  Google Scholar 

  • Coleman PC, Hendrix PF (eds) (2000) Invertebrates as webmasters in ecosystems. CAB International, Wallingford, UK

    Google Scholar 

  • Corbet SA (1997) Role of pollinators in species preservation, conservation, ecosystem stability and genetic diversity. In: Richards KW (ed) Proc Int Symp on Pollination, vol Acta Hort 437, ISHS, pp 219–229

    Google Scholar 

  • Coupe MD, Cahill JFJ (2003) Effects of insects on primary production in temperate herbaceous communities: a meta-analysis. Ecol Entomol 28: 511–521

    CrossRef  Google Scholar 

  • Crawley MJ (1983) Herbivory. The dynamics of animal–plant interactions. Blackwell, Oxford

    Google Scholar 

  • Crawley MJ (ed) (1986) Plant ecology. Blackwell, Oxford

    Google Scholar 

  • Curry JP (1994) The grassland invertebrate community. In: Curry JP (ed) Grassland, invertebrates. Chapman and Hall, London

    Google Scholar 

  • Danell K, Ericson L (1990) Dynamic relations between the antler moth and meadow vegetation in northern Sweden. Ecology 7: 1068–1077

    CrossRef  Google Scholar 

  • Davidson DW (1993) The effects of herbivory and granivory on terrestrial plant succession.Oikos 68: 23–35

    Google Scholar 

  • De Mazancourt C, Loreau M (2000) Effects of herbivory and plant species replacement on primary production.Am Nat 155: 735–754

    Google Scholar 

  • Detling JK (1988) Grasslands and savannas: regulation of energy flow and nutrient cycling by herbivores. In: Pomeroy LR, Alberts JJ (eds) Concepts of ecosystem ecology. Springer, Berlin Heidelberg New York, pp 131–148

    CrossRef  Google Scholar 

  • Dyer MI, Shugart HH (2002) Multi-level interactions arising from herbivory: a simulation analysis of deciduous forests utilizing Foret. Ecol Appl 2: 376–386

    CrossRef  Google Scholar 

  • Dyer MI, Acra MA, Wang GM, Coleman DC, Freckman DW, McNaughton SJ, Strain BR (1991) Source-sink carbon relations in two Panicum coloratum ecotypes in response to herbivory. Ecology 72: 1472–1483

    CrossRef  Google Scholar 

  • Ehrlich P, Ehrlich A (198 1) Extinction: the causes and consequences of the disappearance of species. Random House, New York

    Google Scholar 

  • Feller IC (2002) The role of herbivory by wood-boring insects in mangrove ecosystems in Belize. Oikos 97: 167–176

    CrossRef  Google Scholar 

  • Fonseca CR (1994) Herbivory and the long-lived leaves of an Amazonian ant-tree. J Ecol 82: 833–842

    CrossRef  Google Scholar 

  • Gehring AC, Whitham TG (2002) Mycorrhizae–herbivore interactions: population and community consequences. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 295–344

    CrossRef  Google Scholar 

  • Golley FB, McGinnis JT, Clements RG, Child GI, Duever MJ (1975) Mineral cycling in a tropical forest ecosystem. University of Georgia Press, Athens

    Google Scholar 

  • Gosz JR, Holmes RT, Likens GE, Bormann FH (1978) The flow of energy in a forest ecosystem. Sci Am 238: 92–102

    CrossRef  Google Scholar 

  • Grayston SJ, Dawson LA, Treonis AM, Murray PJ, Ross J, Reid EJ, McDougall R (2001) Impact of root herbivory by insect larvae on soil microbial communities. Eur J Soil Biol 37: 277–280

    CAS  CrossRef  Google Scholar 

  • Grostal P, O’Dowd DJ (1994) Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97: 308–315

    CrossRef  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition.Am Nat 94: 421–425

    Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157: 262–281

    CAS  PubMed  CrossRef  Google Scholar 

  • Hambäck PA (2001) Direct and indirect effects of herbivory: feeding by spittlebugs affects pollinator visitation rates and seedset of Rudbeckia hirta. Ecoscience 8: 45–50

    CrossRef  Google Scholar 

  • Harder LD, Barrett SCH (2002) The energy cost of bee pollination for Pontederia cordata (Pontederiaceae). Funct Ecol 6: 226–233

    CrossRef  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123–1127

    CAS  PubMed  CrossRef  Google Scholar 

  • Honkanen T, Haukioja E (1998) Intra-plant regulation of growth and plant–herbivore interactions. Ecoscience 5: 470–479

    CrossRef  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302–1305

    CAS  CrossRef  Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13: 201–228

    CrossRef  Google Scholar 

  • Huntly N (1991) Herbivores and the dynamics of communities and ecosystems. Annu Rev Ecol Syst 22: 477–503

    CrossRef  Google Scholar 

  • Hutchinson KJ, King KL (1982) Invertebrates and nutrient cycling. In: Lee KE (ed) Proc 3rd Australasian Conf on Grassland Invertebrate Ecology, Adelaide, 30 Nov–4 Dec 1981. SA Government Printer, Adelaide, pp 331–338

    Google Scholar 

  • Hutson BR (1989) The role of fauna in nutrient turnover. In: Majer JD (ed) Animals in primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Irwin RE, Brody AK, Waser NM (2001) The impact of floral larceny on individuals, populations, and communities. Oecologia 129: 161–168

    CrossRef  Google Scholar 

  • Johnson SN, Mayhew PJ, Douglas AE, Hartley SE (2002) Insects as leaf engineers: can leaf-miners alter leaf structure for birch aphids? Funct Ecol 16: 575–584

    CrossRef  Google Scholar 

  • Jones CG, Lawton JH (eds) (1995) Linking species and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    CrossRef  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144

    CAS  PubMed  CrossRef  Google Scholar 

  • Khan ML, Tripathi RS (1991) Seedling survival and growth of early and late successional tree species as affected by insect herbivory and pathogen attack in sub-tropical humid forest stands of north-east India. Acta Ecol 12: 569–579

    Google Scholar 

  • Kinzig AP, Pacala SW, Tilman D (eds) (1991) The functional consequences of biodiversity. Princeton University Press, Princeton

    Google Scholar 

  • Kosola KR, Dickmann DI, Paul EA, Parry D (2001) Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia 129: 65–74

    CrossRef  Google Scholar 

  • Lamb D (1985) The influence of insects on nutrient cycling in eucalypt forests: a beneficial role? Aust J Ecol 10: 1–5

    CrossRef  Google Scholar 

  • Lee KE (1979) The role of invertebrates in nutrient cycling and energy flow in grasslands. In: ( Crosby TK, Pottinger RP (eds) Proc 2nd Australian Conf on Grassland Invertebrate Ecology. Government Printer, Wellington, pp 26–29

    Google Scholar 

  • Lee KE, Wood TG (1971) Termites and soil. Academic Press, London

    Google Scholar 

  • Lerdau M (1996) Insects and ecosystem function. TREE 11: 151–152

    Google Scholar 

  • Lewinsohn TM, Price PW (1996) Diversity of herbivorous insects and ecosystem processes. In: Solbrig OT, Medina E, Silva JF (eds) Biodiversity and savanna ecosystem processes. Ecological studies, vol 121. Springer, Berlin Heidelberg New York, pp 143–157

    CrossRef  Google Scholar 

  • Lightfoot DC, Whitford WG (1990) Phytophagous insects enhance nitrogen flux in a desert creosotebush community. Oecologia 82: 18–25

    CrossRef  Google Scholar 

  • Likens GE (1992) The ecosystem approach: its use and abuse. Ecology Institute, Oldendorf, Germany

    Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biogeochemistry of a forested ecosystem. Springer, Berlin Heidelberg New York

    CrossRef  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli DG, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808

    CAS  PubMed  CrossRef  Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning. Oxford University Press, Oxford

    Google Scholar 

  • Louda SM, Keeler KH, Holt RD (1990) Herbivore influences on plant performance and competitive interactions. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 413–444

    CrossRef  Google Scholar 

  • Lovett GM, Ruesink AE (1995) Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104: 133–138

    CrossRef  Google Scholar 

  • Lovett GM, Christenson LM, Groffman PM, Jones CG, Hart JE, Mitchell MJ (2002) Insect defoliation and nitrogen cycling in forests. Bioscience 52: 335–341

    CrossRef  Google Scholar 

  • Marquis RJ (1996) Plant architecture, sectoriality and plant tolerance to herbivores. Vegetatio 127: 85–97

    CrossRef  Google Scholar 

  • Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190: 515–522

    CrossRef  Google Scholar 

  • McCullough DG, Werner RA (1998) Fire and insects in northern and boreal forest ecosystems of North America. Annu Rev Entomol 43: 107–127

    CAS  PubMed  CrossRef  Google Scholar 

  • McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature (Lond) 390: 162–165

    CAS  CrossRef  Google Scholar 

  • McNaughton SJ (1993) Biodiversity and function of grazing ecosystems. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mitchell CE (2003) Trophic control of grassland production and biomass by pathogens. Ecol Lett 6: 147–155

    CrossRef  Google Scholar 

  • Montoya JM, Rodriguez MA, Hawkins BA (2003) Food web complexity and higher-level ecosystem services. Ecol Lett 6: 587–593

    CrossRef  Google Scholar 

  • Mooney HA (199 1) Emergence of the study of global ecology. Is terrestrial ecology an impediment to progress? Ecol Appl 1: 2–5

    Google Scholar 

  • Mulder CPH, Koricheva J, Huss-Danell K, Högberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecol Lett 2: 237–246

    CrossRef  Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature (Lond) 390: 507–509

    CAS  CrossRef  Google Scholar 

  • Naeem S, Thompson LJ, Lawler JH, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature (Lond) 368: 734–737

    CrossRef  Google Scholar 

  • Odum EP (1953) Fundamentals of ecology.WB Saunders, Philadelphia

    Google Scholar 

  • Petrusewicz K (ed) (1967) Secondary productivity of terrestrial ecosystems (principles and methods), vol II. Panstwowe Wydawnictwo Naukowe, Warszawa, Poland

    Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86: 3–15

    CrossRef  Google Scholar 

  • Price PW (1997) Insect ecology. Wiley, New York

    Google Scholar 

  • Sallabanks R, Courtney SP (1992) Frugivory, seed predation, and insect–vertebrate interactions. Annu Rev Entomol 37: 377–400

    CAS  PubMed  CrossRef  Google Scholar 

  • Schmitz OJ (2003) Top predator control of plant biodiversity and productivity in an old-field ecosystem. Ecol Lett 6: 156–163

    CrossRef  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants.Am Nat 155: 141–153

    Google Scholar 

  • Schowalter TD (2000a) Insect ecology: an ecosystem approach. Academic Press, SanDiego

    Google Scholar 

  • Schowalter TD (2000b) Insects as regulators of ecosystem development. In: Colema PC, Hendrix PF (eds) Invertebrates as webmaster in ecosystem. CAB International, Wallingford, UK, pp 99–114

    CrossRef  Google Scholar 

  • Schowalter TD, Hargrove WW, Crossley JDA (1986) Herbivory in forested ecosystems. Annu Rev Entomol 186: 177–196

    CrossRef  Google Scholar 

  • Schulze ED, Mooney HA (eds) (1993) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Seastedt TR, Crossley DAJ (1984) The influence of arthropods on ecosystems. Bioscience 34: 157–161

    CrossRef  Google Scholar 

  • Stadler B, Solinger S, Michalzik B (2001) Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forests. Oecologia 126: 104–113

    CrossRef  Google Scholar 

  • Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J Linn Soc 35: 321–337

    CrossRef  Google Scholar 

  • Stowe KA, Marquis RJ, Hochwender CG, Simms EL (2000) The evolutionary ecology of tolerance to consumer damage. Annu Rev Ecol Syst 31: 565–595

    CrossRef  Google Scholar 

  • Strauss SY, Agrawal AA, Strand MR (1999) The ecology and evolution of plant tolerance to herbivory. TREE 14: 179–185

    PubMed  Google Scholar 

  • Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature (Lond) 367: 363–365

    CrossRef  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature (Lond) 379: 718–720

    CAS  CrossRef  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302

    CAS  CrossRef  Google Scholar 

  • Trumble JT, Kolodny-Hirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38: 93–119

    CrossRef  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253

    CAS  PubMed  CrossRef  Google Scholar 

  • Urbanek RP (1988) The influence of fauna on plant productivity. In: Majer JD (ed) Ani- mals in primary succession. Cambridge University Press, Cambridge, pp 71–106

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature (Lond) 396: 69–72

    CrossRef  CAS  Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41: 115–139

    CAS  PubMed  CrossRef  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the above-and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Whelan RJ (1989) The influence of fauna on plant species composition. In: Majer JD (ed) Animals in primary succession. Cambridge University Press, Cambridge, pp 107–143

    Google Scholar 

  • Wiegert RG, Evans FC (1967) Investigations of secondary productivity in grasslands. In: Petrusewicz K (ed) Secondary productivity of terrestrial ecosystems (principles and methods), vol 1. Panstwowe Wydawnictwo Naukowe, Warszawa, Krakow, pp 499–518

    Google Scholar 

  • Wilson EO (ed) (1988) Biodiversity. National Academy Press, Washington

    Google Scholar 

  • Willson MF (1992) The ecology of seed dispersal. CAB International, Wallingford, UK

    Google Scholar 

  • Zlotin RI, Khodashova KS (1980) The role of animals in biological cycling of foreststeppe ecosystems. Dowden, Hutchinson and Ross., Stroudsburg, Pennsylvania

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weisser, W.W., Siemann, E. (2008). The Various Effects of Insects on Ecosystem Functioning. In: Weisser, W.W., Siemann, E. (eds) Insects and Ecosystem Function. Ecological Studies, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74004-9_1

Download citation