Skip to main content

Nodular Structure of Polymers in the Membrane

  • Chapter
Synthetic Polymeric Membranes

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

Important membrane surface properties include the size of nodules and nodule aggregates, the shape of pores, the pore size and pore size distribution, and the surface roughness. In this chapter, the focus will be on nodules and nodular aggregates since AFM seems most suitable for those. Moreover, there is evidence that nodular structure has some relationship to membrane performance. The phase contrast imaging technique in AFM can distinguished between the amorphous and crystalline phase. A solid formed by the solidification of a chemical and having a highly atomic structure is called a crystal, which has a regular structure and size. On the other hand, a nodule is a mass of polymer molecule agglomerates that are entangled with each other. At a lamellar crystal level, the morphology and crystalline structure are deduced by TEM or X-ray studies. However, the resolution of the AFM can go beyond that easily available with TEM imaging of polymers. At a higher resolution, AFM can give better results and in some cases has revealed unpredicted surface structures. AFM presents surface structures in real space, whereas structural information can be deduced from diffraction data (small angle X-ray scattering or small angle neutron scattering) only in interplay with structural models. Asynthetic polymermay be described as crystalline if it contains regions of threedimensional ordering on atomic (rather than macromolecular) length scales, usually arising from intramolecular folding and/or stacking of adjacent chains. The stacks formed by the folding of chains are called lamellae. Sometimes part of the chain is included in this crystal and part of it isn’t. Lamellae are not neat and tidy, but sloppy, with chains hanging out everywhere. The synthetic polymer may consist of both a crystalline and an amorphous region.The crystalline portion is in the lamellae, and the amorphous portion is outside the lamellae. The degree of crystallinity is expressed in terms of a weight fraction or volume fraction of crystalline material. To examine lamellae and other nanometer-scale structures in polymer materials, it is necessary to achieve high-resolution imaging on the submicron scale.This is easily achieved using Nanoscope® MultiMode™ and Dimension™ 3100 AFMs (Digital Instruments, VeecoMetrology Group, Santa Barbara, CA) under ambient conditions. The necessary prerequisite for high-resolution imaging is a sharp tip. Tapping mode is particularly important for this purpose due to its ability to image softmaterials such as most polymers without sample alteration. Low-force imaging or light tapping allows imaging of top surface features with lateral resolution determined by the small tip contact area (2–3 nm). Imaging with elevated forces or hard tapping allows visualization of subsurface structures and differentiation of crystalline and amorphous regions. Height images yield the true three-dimensional topography of the sample surface; the deflection mode is useful for a sharp contrast of the features imaged. Images of the surface of a nodule can expose the lamellar or crystalline phases.The phase contrast imaging technique can be distinguished between the crystalline and amorphous phase. Nodules are defined as spherical cellswith a diameter of a fewhundred angstroms that are compacted irregularly at the membrane surface. They can also be observed underneath themembrane surface when a cross-sectional picture is taken. Each nodule contains several tens of thousands ofmacromolecules. Schultz and Asunmaawere the first to report the observation of nodules on the surface of an ultrathin cellulose acetatemembrane by electronmicroscope [1]. Figure 4.1 shows the picture taken by them.The nodular structure of the membrane surface is clearly seen with an average nodular diameter of 188 ± 3 Å.The same authors also took a picture of an asymmetric cellulose acetate membrane and found that it, too, had a nodular structure. Panar et al. [2] then observed the close monolayer packing of micelles with diameters from 400 to 800 Å when a cross-sectional picture of an asymmetric aromatic polyamidehydrazide membrane was taken (Fig. 4.2).The top monolayer covers a support layer where the spherical micelles are irregularly packed with void spaces of 75–100 Å. They attributed the formation of the nodules to the micellar structure that was initially present at the surface of the polyamidehydrazide solution. Nodular structures were found not only in the ultrathin and asymmetric membranes but also at the surface of thin film composite (TFC) membranes. Cadotte reported that nodules were closely packed at the surface of a fully aromatic polyamide TFC membrane prepared by the in situ polycondensation reaction between m-phenylene diamine and trimesoyl chloride [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz R, Asunmaa S (1970) Recent Prog Surf Sci 3:291

    CAS  Google Scholar 

  2. Panar M, Hoehn HH, Herbert RR (1973) Macromolecules 6:777

    Article  CAS  Google Scholar 

  3. Cadotte J (1981) US Patent 4,277,344

    Google Scholar 

  4. Cadotte J (1985) In: Lloyd DR (ed) Materials science of synthetic membranes. ACS Symposium Series 269. American Chemical Society, Washington, DC, p 273

    Google Scholar 

  5. Kesting RE (1990) J Polym Sci 41:2739

    CAS  Google Scholar 

  6. Kamide K, Iijima H, Matsuda S (1993) Polym J 25:1113

    Article  CAS  Google Scholar 

  7. Wienk IM, Boomgaard Th ven den, Smolders CA (1994) J Appl Polym Sci 53:1011

    Article  CAS  Google Scholar 

  8. Broens L, Altena FW, Smolders CA, Koenhn DM (1980) Desalination 32:33

    Article  Google Scholar 

  9. Ray RJ, Krantz WB, Sani RL (1985) J Membr Sci 23:155

    Article  CAS  Google Scholar 

  10. Kimmerle K, Strathmann H (1990) Desalination 79:283

    Article  CAS  Google Scholar 

  11. Reuvers AJ, van der Berg JWA, Smolders CA (1987) J Membr Sci 34:45

    Article  CAS  Google Scholar 

  12. Reuvers AJ, Smolders CA (1987) J Membr Sci 34:67

    Article  CAS  Google Scholar 

  13. Pinnau I (1991) Ph.D. thesis, University of Texas

    Google Scholar 

  14. Boom RM, Wienk IM, Boomgaard Th ven den, Smolders CA (1992) J Membr Sci 73:277

    Article  CAS  Google Scholar 

  15. Kawakami H, Mikawa M, Nagaoka S (1997) J Membr Sci 137:241

    Article  CAS  Google Scholar 

  16. Khulbe KC, Kruczek B, Chowdhury G, Gagne S, Matsuura T, Verma SP (1996) J Membr Sci 111:57

    Article  CAS  Google Scholar 

  17. Khulbe KC, Kruczek B, Chowdhury G, Gagne S, Matsuura T (1996) J Appl Polym Sci 59:1151

    Article  CAS  Google Scholar 

  18. Pinnau I, Koros WJ (1991) J Appl Polym Sci 43:1491

    Article  CAS  Google Scholar 

  19. Pfromm PH, Pinnau I, Koros WJ (1993) J Appl Polym Sci 48:2167

    Article  Google Scholar 

  20. Yeh GSY, Geil P (1967) J Macromol Sci Part B Phys 1:235 and 251

    Google Scholar 

  21. Keith H (1965) Kolloid ZZ Polym 211:53

    Google Scholar 

  22. Fritzsche AK, Armuster BL, Fraundorf PB, Pelligrin CJ (1990) J Appl Polym Sci 39:1915

    Article  CAS  Google Scholar 

  23. Albrecht TR, Dovek MM, Lang CA, Grutter P, Quate CF, Kuan SNJ, Frank CW, Pease RFW (1988) J Appl Phys 64:1178

    Article  CAS  Google Scholar 

  24. Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) J Membr Sci 135:211

    Article  CAS  Google Scholar 

  25. Ariza MJ, Pradanos P, Rico R, Rodriguez-Castellon E, Benavente J (2003) Surf Interface Anal 35:360

    Article  CAS  Google Scholar 

  26. Ochoa NA, Pradanos P, Palacio L, Pagliero C, Marchese J, Hernandez A (2001) J Membr Sci 187:227

    Article  CAS  Google Scholar 

  27. Kwak SY, Yeom MO, Roh IJ, Kim DY (1997) J Membr Sci 132:183

    Article  CAS  Google Scholar 

  28. Zhang W, He G, Gao P, Chen G (2003) Sep Purif Technol 30:27

    Article  CAS  Google Scholar 

  29. Oh NW, Jegal J, Lee KH (2001) J Appl Polym Sci 80:2729

    Article  CAS  Google Scholar 

  30. Hamza A, Chowdhury G, Matsuura T, Sourirajan S (1997) J Membr Sci 129:55

    Article  CAS  Google Scholar 

  31. Khayet M, Feng CY, Matsuura T (2003) J Membr Sci 213:159

    Article  CAS  Google Scholar 

  32. Khayet M, Khulbe KC, Matsuura T (2004) J Membr Sci 238:199

    Article  CAS  Google Scholar 

  33. James PJ, Elliot JA, McMaster TJ, Newton JM, Elliot AMS, Hanna S, Miles MJ (2000) J Mater Sci 35:5111

    Article  CAS  Google Scholar 

  34. Kasper K, Hermann KH, Dietz P, Hansma PK, Rintelen Th (1992) Ultramicroscopy 42–43:1181

    Google Scholar 

  35. Kawakami M, Yamashita Y, Iwamoto M, Kagawa S (1984) J Membr Sci 19:249

    Article  CAS  Google Scholar 

  36. Inagaki N (1996) Plasma surface modification and plasma polymerization. Technomic, Lancaster

    Google Scholar 

  37. Lee KR, Teng MY, Lee HH, Lai JY (2000) J Membr Sci 164:1554

    Article  Google Scholar 

  38. Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK (2000) J Appl Polym Sci 75:1554

    Article  CAS  Google Scholar 

  39. Mulder M (1991) Basic principles of membrane technology. Kluwer, Dordrecht

    Google Scholar 

  40. Vidaurre CEF, Achete CA, Gallo F, Garcia D, Simão R, Habert AC (2002) Mat Res 5:37

    Article  CAS  Google Scholar 

  41. Shimomura T, Hirakawa M, Murase I, Sasaki M, Sano T (1984) J Appl Polym Sci 38:173

    CAS  Google Scholar 

  42. Vidaurre CEF, Achete CA, Simão R, Habert AC (2001) Nucl Instrum Methods Phys Res Sect B 175–177:732

    Google Scholar 

  43. Kim JY, Lee KH, Kim SC (1999) J Membr Sci 163:159

    Article  CAS  Google Scholar 

  44. Dreux F, Marais S, Poncin-Epaillard F, Metayer M, Labbe M, Saiter JM (2003) Mater Res Innovations 7:183

    Article  CAS  Google Scholar 

  45. Marais S, Métayer M, Labbé M, Vallenton JM, Alexander S, Saiter JM, Poncin-Epaillard F (1999) Surf Coat Technol 122:247

    Article  CAS  Google Scholar 

  46. Gancarz I, Pozniak G, Bryjak M (1999) Eur Polym J 35:1419

    Article  CAS  Google Scholar 

  47. Iijima Y, Tazawa T, Sato K, Oshima M, Hiraoka K (2000) Surf Interface Anal 29:596

    Article  CAS  Google Scholar 

  48. Finot E, Roualdes S, Kirchner M, Rouessac V, Berjoan R, Durand J, Goudonnet JP, Cot L (2002) Appl Surf Sci 187:326

    Article  CAS  Google Scholar 

  49. van’t Hoff JA (1988) Ph.D. thesis, University of Twente

    Google Scholar 

  50. Fritzsche AK, Cruse CA, Kesting RE, Murphy MK (1990) J Appl Polym Sci 40:19

    Article  CAS  Google Scholar 

  51. Fritzsche AK, Cruse CA, Kesting RE, Murphy MK (1990) J Appl Polym Sci 41:713

    Article  Google Scholar 

  52. Fritzsche AK (1987) Proc Am Chem Soc Div Polym Mater Sci Eng 56:41

    CAS  Google Scholar 

  53. Weigel U, Schulz E, Makschin W, Albrecht W, Klug P, Gröbe V (1988) Acta Polym 39:174

    Article  CAS  Google Scholar 

  54. Khulbe KC, Matsuura T (2000) J Membr Sci 171:273

    Article  CAS  Google Scholar 

  55. Fujii Y, Iwatani H, Kigoshi S (1992) Polym J 24:737

    Article  CAS  Google Scholar 

  56. Mahon HI (1966) US Patents 3,228,276 and 3,228,877

    Google Scholar 

  57. McKelvey SA (1997) Ph.D. thesis, University of Texas

    Google Scholar 

  58. Chung TS, Qin JJ, Huan A, Toh KC (2002) J Membr Sci 196:251

    Article  CAS  Google Scholar 

  59. Kapantaidakis GC, Koops GH (2002) J Membr Sci 204:153

    Article  CAS  Google Scholar 

  60. Kapantaidakis GC, Koops GH, Wessling M (2002) Desalination 145:353

    Article  CAS  Google Scholar 

  61. Khulbe KC, Feng C, Matsuura T, Kapantaidakis GC, Wessling M, Koops GH (2003) J Membr Sci 226:63

    Article  CAS  Google Scholar 

  62. Khulbe KC, Feng CY, Hamad F, Matsuura T, Khayet M (2004) J Membr Sci 245:191

    Article  CAS  Google Scholar 

  63. Feng CY, Khulbe KC, Chowdhury G, Matsuura T, Sapkal VC (2001) J Membr Sci 189:193

    Article  CAS  Google Scholar 

  64. Tsunoda N, Kokubo K, Sakai K (1999) ASAIO J 45:418

    Article  CAS  Google Scholar 

  65. Asmanrafat M (2002) MSc thesis, University of Ottawa

    Google Scholar 

  66. Barzin J, Feng C, Khulbe KC, Matsuura T, Madaeni SS, Mirzadeh H (2004) J Membr Sci 273:77

    Article  Google Scholar 

  67. Gholami MG, Nasseri S, Feng C, Matsuura T, Khulbe KC (2004) J Membr Sci 237:77

    Article  Google Scholar 

  68. Hayama M, Kohori F, Sakai K (2002) J Membr Sci 197:243

    Article  CAS  Google Scholar 

  69. Khulbe KC, Chowdhury G, Kruczek B, Vujosevic R, Matsuura T, Lamarche G (1997) J Membr Sci 126:115

    Article  CAS  Google Scholar 

  70. Khulbe KC, Matsuura T, Noh SH (1998) J Membr Sci 145:243

    Article  CAS  Google Scholar 

  71. Kesting RE (1997) Synthetic polymer membranes. McGraw-Hill, New York, p 153

    Google Scholar 

  72. Welty JR, Wicks CE, Wilson RE (1984) Fundamentals of momentum, heat, and mass transfer, 3rd edn. Wiley, New York

    Google Scholar 

  73. Nield DA (1964) J Fluid Mech 19:341

    Article  Google Scholar 

  74. Scriven LE, Sterling CV (1964) J Fluid Mech 19:321

    Article  Google Scholar 

  75. Koschmieder EL, Biggerstaff MI (1986) J Fluid Mech 167:49

    Article  CAS  Google Scholar 

  76. Lehmani A, Durand-Vidal S, Turq P (1998) J Appl Polym Sci 68:503

    Article  CAS  Google Scholar 

  77. Gebel G, Aldebert P, Pineri M (1993) Polymer 34:33

    Article  Google Scholar 

  78. Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G (2004) Solid State Ionics 166:383

    Article  CAS  Google Scholar 

  79. Zhang Y, Shao H, Hu X (2002) J Appl Polym Sci 86:3389

    Article  CAS  Google Scholar 

  80. Oh NW, Jegal J, Lee KH (2001) J Appl Polym Sci 80:2729

    Article  CAS  Google Scholar 

  81. Oh NW, Jegal J, Lee KH, (2001) J Appl Polym Sci 80:1854

    Article  CAS  Google Scholar 

  82. Stamatialis DF, Dias M, Pinho N (1999) J Membr Sci 160:235

    Article  CAS  Google Scholar 

  83. Alsari AM, Khulbe KC, Matsuura T (2001) J Membr Sci 188:279

    Article  CAS  Google Scholar 

  84. Xu X, Coleman M (1997) J Appl Polym Sci 66:459

    Article  CAS  Google Scholar 

  85. Broadhead KW, Tresco PA (1998) J Membr Sci 147:235

    Article  CAS  Google Scholar 

  86. Behbahani HF, Inoue H (1989) J Membr Sci 47:131

    Article  CAS  Google Scholar 

  87. Reid BD, Ebron VHM, Musselman IH, Ferraris JP, Balkus KJ Jr (2002) J Membr Sci 195:181

    Article  CAS  Google Scholar 

  88. Hamad F, Khulbe KC, Matsuura T (2005) J Membr Sci 256:29

    CAS  Google Scholar 

  89. Teng MY, Lee KR, Liaw DJ, Lin YS, Lai JY (2000) Eur Polym J 36:663

    Article  CAS  Google Scholar 

  90. Wang YC, Li CL, Chang PF, Fan SC, Lee KR, Lai JY (2002) J Membr Sci 208:3

    Article  CAS  Google Scholar 

  91. Bowen WR, Doneva TA, Yin HB (2002) J Membr Sci 206:417

    Article  CAS  Google Scholar 

  92. Kwak SY, Ihm DW (1990) J Membr Sci 158:143

    Article  Google Scholar 

  93. Hirose M, Ito H, Kameyama Y (1996) J Membr Sci 121:209

    Article  CAS  Google Scholar 

  94. Vrijenhoek EM, Hong S, Elimelech M (2001) J Membr Sci 188:115

    Article  CAS  Google Scholar 

  95. Khayet M, Feng CY, Khulbe KC, Matsuura T (2002) Polymer 43:3879

    Article  CAS  Google Scholar 

  96. Espinoza-Gomëz H, Lin SW (2001) Polym Bull 47:297

    Article  Google Scholar 

  97. Bowen WR, Doneva TA (2000) Surf Interface Anal 29:544

    Article  CAS  Google Scholar 

  98. James BJ, Jing Y, Chen XD (2003) J Food Eng 60:431

    Article  Google Scholar 

  99. Prádanos P, Rodriguez ML, Calvo JI, Hernández A, Tejerina F, de Saja JA (1996) J Membr Sci 117:291

    Article  Google Scholar 

  100. Hilal N, Kochkodan V, Al-Khatib L, Busca G (2002) Surf Interface Anal 33:672

    Article  CAS  Google Scholar 

  101. Ohta Y, Otsuka C, Okamoto H (2003) J Artif Organs 6:101

    Google Scholar 

  102. Hayama M, Yamamoto K, Kohori F, Sakai K (2004) J Membr Sci 234:41

    Article  CAS  Google Scholar 

  103. Liu WG, Li F, Zhao XD, Yao KD, Liu QG (2002) Polym Int 51:1459

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Nodular Structure of Polymers in the Membrane. In: Synthetic Polymeric Membranes. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73994-4_4

Download citation

Publish with us

Policies and ethics