Part of the Springer Laboratory book series (SPLABORATORY)


Thomas Graham was the father of membrane science, and he performed the first recorded experiments on the transport of gases and vapors in polymeric membranes. In 1829, he observed that a wet pig bladder inflated to the bursting point when placed in an atmosphere of carbon dioxide [1]. In 1861, Graham reported his first dialysis experiment using a synthetic membrane [2]. He also tested a permeability rate measuring device using flat membranes with a vacuum on one side, displacing amercury column, and postulated a mechanism for the permeation process [3].Mitchell [4, 5] was the first who reported gas permeation through natural rubbers. Schoenbein [6] was the first to study cellulose nitrate, the first synthetic (or semisynthetic) polymer. Fick [7] used cellulose nitratemembranes in his classic study “Ueber Diffusion”. Lord Rayleigh [8]] was the first to determine the relative permeabilities of oxygen, nitrogen, and argon in rubber. Later on, polymer membranes were used for the separation of gases, etc. [9, 10]. Since the early 1960s, synthetic membranes have been used successfully in a wide variety of industrial applications.


Atomic Force Microscopy Relative Permeability Natural Rubber Composite Membrane Polymeric Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Graham T (1829) Roy Inst JGoogle Scholar
  2. 2.
    Graham T (1861) Phil Trans R Soc 151:183CrossRefGoogle Scholar
  3. 3.
    Graham T (1866) Philos Mag 32:401Google Scholar
  4. 4.
    Mitchell JK (1831) Roy Inst J 2:101Google Scholar
  5. 5.
    Mitchell JK (1831) Roy Inst J 2:307Google Scholar
  6. 6.
    Schoenbein C (1846) British Patent 11 402Google Scholar
  7. 7.
    Fick A (1855) Ann Phys Chem 94:59CrossRefGoogle Scholar
  8. 8.
    Lord Rayleigh JW (1900) Philos Mag 49:220Google Scholar
  9. 9.
    Matthes A (1944) Kolloid Z 108:79Google Scholar
  10. 10.
    Barrer RM, Barrie JA, Slater J (1958) J Polym Sci 27:177CrossRefGoogle Scholar
  11. 11.
    Mulder M (1996) Basic principles of membrane technology. Kluwer, DordrechtGoogle Scholar
  12. 12.
    Lloyd DR (1985) Membrane materials science: an overview. In: Lloyd DR (ed) Materials science of synthetic membranes. ACS Symposium series 269. American Chemical Society, Washington, DC, p 1Google Scholar
  13. 13.
    Pinnau I, Freeman BD (1999) Formation and modification of polymeric membranes: overview. In: Pinnau I, Freeman BD (eds) Membrane formation and modification, ACS symposium 744. American Chemical Society, Washington, DC, p 1Google Scholar
  14. 14.
    Kesting RE (1971) Synthetic polymeric membranes. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Strathmann H (1985) In: Porter MC (ed) Handbook of industrial membrane technology. Noyes, Park Ridge, p 1Google Scholar
  16. 16.
    Kim KJ, Fane AG (1994) J Membr Sci 88:103CrossRefGoogle Scholar
  17. 17.
    Magonov SN, Wangbo MH (1996) Surface analysis with STM and AFM: experimental and theoretical aspects of image analysis. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Binning G, Quate CF, Gerber CH (1986) Phys Rev Lett 56:930CrossRefGoogle Scholar
  19. 19.
    Nakao S (1994) J Membr Sci 96:131CrossRefGoogle Scholar
  20. 20.
    Albrecht TR, Dovek MM, Lang CA, Grutter P, Quate CF, Kuan SNJ, Frank CW, Pease RFW (1988) J Appl Phys 64:1178CrossRefGoogle Scholar
  21. 21.
    Hansma PK, Elings VB, Marti O, Bracker CE (1988) Science 242:209CrossRefGoogle Scholar
  22. 22.
    Weisenhorn AL, Maivald P, Butt HJ, Hansma PK (1992) Phys Rev B Condens Matter Mater Phys 45:11226Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations