Skip to main content

The Core Method: Connectionist Model Generation for First-Order Logic Programs

  • Chapter
Perspectives of Neural-Symbolic Integration

Part of the book series: Studies in Computational Intelligence ((SCI,volume 77))

Research into the processing of symbolic knowledge by means of connectionist networks aims at systems which combine the declarative nature of logicbased artificial intelligence with the robustness and trainability of artificial neural networks. This endeavour has been addressed quite successfully in the past for propositional knowledge representation and reasoning tasks. However, as soon as these tasks are extended beyond propositional logic, it is not obvious at all what neuralsymbolic systems should look like such that they are truly connectionist and allow for a declarative reading at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5 (1943) 115-133

    Article  MATH  MathSciNet  Google Scholar 

  2. Pinkas, G.: Symmetric neural networks and logic satisfiability. Neural Computation 3 (1991) 282-291

    Article  Google Scholar 

  3. McCarthy, J.: Epistemological challanges for connectionism. Behavioural and Brain Sciences 11 (1988) 44 Commentary to [12].

    Google Scholar 

  4. Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration - a struc-tured survey. In: S. Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb and J. Woods (eds).: We Will Show Them: Essays in Honour of Dov Gabbay, Volume 1. International Federation for Computational Logic, College Publica-tions (2005) 167-194

    Google Scholar 

  5. Ballard, D.H.: Parallel logic inference and energy minimization. In: Proceedings of the AAAI National Conference on Artificial Intelligence. (1986) 203 - 208

    Google Scholar 

  6. Lange, T.E., Dyer, M.G.: High-level inferencing in a connectionist network. Connection Science 1 (1989) 181-217

    Article  Google Scholar 

  7. Shastri, L., Ajjanagadde, V.: From associations to systematic reasoning: A con-nectionist representation of rules, variables and dynamic bindings using tempo-ral synchrony. Behavioural and Brain Sciences 16 (1993) 417-494

    Article  Google Scholar 

  8. Hölldobler, S., Kurfess, F.: CHCL - A connectionist inference system. In Fronhöfer, B., Wrightson, G., eds.: Parallelization in Inference Systems. Springer, LNAI 590 (1992) 318 - 342

    Google Scholar 

  9. Pollack, J.B.: Recursive distributed representations. AIJ 46 (1990) 77-105

    Google Scholar 

  10. Plate, T.A.: Holographic reduced networks. In Giles, C.L., Hanson, S.J., Cowan, J.D., eds.: Advances in Neural Information Processing Systems 5. Morgan Kaufmann (1992)

    Google Scholar 

  11. Elman, J.L.: Structured representations and connectionist models. In: Proceed-ings of the Annual Conference of the Cognitive Science Society. (1989) 17-25

    Google Scholar 

  12. Smolensky, P.: On variable binding and the representation of symbolic struc-tures in connectionist systems. Technical Report CU-CS-355-87, Department of Computer Science & Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430 (1987)

    Google Scholar 

  13. Bader, S., Hitzler, P., Hölldobler, S.: The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Arti-ficial Intelligence. Information 9 (2006).

    Google Scholar 

  14. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Machine Learning 13 (1993) 71-101

    Google Scholar 

  15. Hölldobler, S., Kalinke, Y.: Towards a massively parallel computational model for logic programming. In: Proceedings ECAI94 Workshop on Combining Sym-bolic and Connectionist Processing, ECCAI (1994) 68-77

    Google Scholar 

  16. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

    Google Scholar 

  17. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1988)

    Google Scholar 

  18. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In Minker, J., ed.: Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, Los Altos, CA (1988) 89-148

    Google Scholar 

  19. Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist net-works. Journal of Applied Logic 3 (2004) 245-272

    Article  Google Scholar 

  20. d’Avila Garcez, A.S., Zaverucha, G., de Carvalho, L.A.V.: Logical inference and inductive learning in artificial neural networks. In Hermann, C., Reine, F., Strohmaier, A., eds.: Knowledge Representation in Neural networks. Logos Verlag, Berlin (1997) 33-46

    Google Scholar 

  21. d’Avila Garcez, A.S., Broda, K.B., Gabbay, D.M.: Neural-Symbolic Learning Systems — Foundations and Applications. Perspectives in Neural Computing. Springer, Berlin (2002)

    Google Scholar 

  22. Kalinke, Y.: Ein massiv paralleles Berechnungsmodell für normale logische Pro-gramme. Master’s thesis, TU Dresden, Fakultät Informatik (1994) (in German).

    Google Scholar 

  23. Seda, A., Lane, M.: Some aspects of the integration of connectionist and logic-based systems. In: Proceedings of the Third International Conference on Infor-mation, International Information Institute, Tokyo, Japan (2004) 297-300

    Google Scholar 

  24. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: A connectionist inductive learning system for modal logic programming. In: Proceedings of the IEEE International Conference on Neural Information Processing ICONIP’02, Singa-pore. (2002)

    Google Scholar 

  25. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Neural-symbolic intuitionistic reasoning. In A. Abraham, M.K., Franke, K., eds.: Frontiers in Artificial Intel-ligence and Applications, Melbourne, Australia, IOS Press (2003) Proceedings of the Third International Conference on Hybrid Intelligent Systems (HIS’03).

    Google Scholar 

  26. Andrews, R., Diederich, J., Tickle, A.: A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8 (1995)

    Google Scholar 

  27. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366

    Article  Google Scholar 

  28. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192

    Article  Google Scholar 

  29. Hölldobler, S., Kalinke, Y., Störr, H.P.: Approximating the semantics of logic programs by recurrent neural networks. Applied Intelligence 11 (1999) 45 58

    Article  Google Scholar 

  30. Willard, S.: General Topology. Addison-Wesley (1970)

    Google Scholar 

  31. Fitting, M.: Metric methods, three examples and a theorem. Journal of Logic Programming 21 (1994) 113-127

    MATH  MathSciNet  Google Scholar 

  32. Bader, S., Hitzler, P., Witzel, A.: Integrating first-order logic programs and con-nectionist systems - a constructive approach. In d’Avila Garcez, A.S., Elman, J., Hitzler, P., eds.: Proceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and Reasoning, NeSy’05, Edinburgh, UK. (2005)

    Google Scholar 

  33. Witzel, A.: Integrating first-order logic programs and connectionist systems - a constructive approach. Project thesis, Department of Computer Science, Technische Universität Dresden, Dresden, Germany (2005)

    Google Scholar 

  34. Barnsley, M.: Fractals Everywhere. Academic Press, San Diego, CA, USA (1993)

    MATH  Google Scholar 

  35. Witzel, A.: Neural-symbolic integration - constructive approaches. Master’s thesis, Department of Computer Science, Technische Universität Dresden, Dresden, Germany (2006)

    Google Scholar 

  36. Bader, S., Hitzler, P., Hölldobler, S., Witzel, A.: A fully connectionist model generator for covered first-order logic programs. In Veloso, M.M., ed.: Proceed-ings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, Menlo Park CA,  AAAI Press (2007) 666-671

    Google Scholar 

  37. Fritzke, B.: Vektorbasierte Neuronale Netze. Habilitation, Technische Univer-sität Dresden (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bader, S., Hitzler, P., Hölldobler, S., Witzel, A. (2007). The Core Method: Connectionist Model Generation for First-Order Logic Programs. In: Hammer, B., Hitzler, P. (eds) Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73954-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73954-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73953-1

  • Online ISBN: 978-3-540-73954-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics