Skip to main content

Time Series Prediction with the Self-Organizing Map: A Review

  • Chapter
Perspectives of Neural-Symbolic Integration

Part of the book series: Studies in Computational Intelligence ((SCI,volume 77))

We provide a comprehensive and updated survey on applications of Kohonen’s self-organizing map (SOM) to time series prediction (TSP). The main goal of the paper is to show that, despite being originally designed as an unsupervised learning algorithm, the SOM is flexible enough to give rise to a number of efficient supervised neural architectures devoted to TSP tasks. For each SOM-based architecture to be presented, we report its algorithm implementation in detail. Similarities and differences of such SOM-based TSP models with respect to standard linear and nonlinear TSP techniques are also highlighted. We conclude the paper with indications of possible directions for further research on this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weigend, A., Gershefeld, N.: Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley (1993)

    Google Scholar 

  2. Palit, A., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. 1st edn. Springer (2005)

    Google Scholar 

  3. Kohonen, T.: The self-organizing map. Neurocomputing 21 (1998) 1-6

    Article  MATH  Google Scholar 

  4. Kohonen, T.: Self-Organizing Maps. 2nd extended edn. Springer-Verlag, Berlin, Heidelberg (1997)

    Google Scholar 

  5. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9) (1990) 1464-1480

    Article  Google Scholar 

  6. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3) (2005) 645-678

    Article  Google Scholar 

  7. Flexer, A.: On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis 5(5) (2001) 373-384

    MATH  Google Scholar 

  8. Frank, R., Davey, N., Hunt, S.: Time series prediction and neural networks. Journal of Intelligent and Robotic Systems 31(1-3) (2001) 91-103

    Article  MATH  Google Scholar 

  9. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14(1) (1998) 35-62

    Article  Google Scholar 

  10. Dorffner, G.: Neural networks for time series processing. Neural Network World 6 (4) (1996) 447-468

    Google Scholar 

  11. Pedreira, C.E., Peres, R.: Preliminary results on noise detection and data se-lection for vector quantization. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI’06). (2006) 3617-3621

    Google Scholar 

  12. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. Proceedings of the IEEE 84(10) (1996) 1358-1384

    Article  Google Scholar 

  13. Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys 3 (2003) 1-156

    Google Scholar 

  14. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press (1999)

    Google Scholar 

  15. Box, G., Jenkins, G.M., Reinsel, G.: Time Series Analysis: Forecasting & Control. 3rd edn. Prentice-Hall (1994)

    Google Scholar 

  16. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. International Journal of Forecasting 22(4) (2006) 679-688

    Article  Google Scholar 

  17. Fritzke, B.: Unsupervised ontogenetic networks. In Beale, R., Fiesler, E., eds.: Handbook of Neural Computation. IOP Publishing/Oxford University Press (1996)1-16

    Google Scholar 

  18. Fahlman, S., Lebiere, C.: The cascade-correlation learning architecture. Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon University (1991)

    Google Scholar 

  19. Barreto, G.A., Araújo, A.F.R.: Identification and control of dynamical systems using the self-organizing map. IEEE Transactions on Neural Networks 15(5) (2004) 1244-1259

    Article  Google Scholar 

  20. Barreto, G., Araújo, A.: A self-organizing NARX network and its application to prediction of chaotic time series. In: Proceedings of the IEEE-INNS Int. Joint Conf. on Neural Networks, (IJCNN’01). Volume 3., Washington, D.C. (2001) 2144-2149

    Google Scholar 

  21. Barreto, G.A., Araújo, A.F.R., Ritter, H.J.: Self-organizing feature maps for modeling and control of robotic manipulators. Journal of Intelligent and Robotic Systems 36(4) (2003) 407-450

    Article  MATH  Google Scholar 

  22. Farmer, J., Sidorowich, J.: Predicting chaotic time series. Physical Review Letters 59(8) (1987) 845-848

    Article  MathSciNet  Google Scholar 

  23. Baumann, T., Germond, A.J.: Application of the Kohonen network to short-term load forecasting. In: Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems (ANNPS’93). (1993) 407-412

    Google Scholar 

  24. Lendasse, A., Lee, J., Wertz, V., Verleysen, M.: Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neurocomputing 48(1-4) (2002) 299-311

    Article  MATH  Google Scholar 

  25. Lendasse, A., Francois, D., Wertz, V., Verleysen, M.: Vector quantization: a weighted version for time-series forecasting. Future Generation Computer Sys-tems 21(7) (2005) 1056-1067

    Article  Google Scholar 

  26. Göppert, J., Rosenstiel, W.: Topology preserving interpolation in self-organizing maps. In: Proceedings of the NeuroNIMES’93. (1993) 425-434

    Google Scholar 

  27. Göppert, J., Rosenstiel, W.: Topological interpolation in SOM by affine transformations. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN’95). (1995) 15-20

    Google Scholar 

  28. Walter, J., Ritter, H.: Rapid learning with parametrized self-organizing maps. Neurocomputing 12 (1996) 131-153

    Article  MATH  Google Scholar 

  29. Barreto, G., Souza, L.: Adaptive filtering with the self-organizing map: a per-formance comparison. Neural Networks 19 (6-7) (2006) 785-798

    Article  MATH  Google Scholar 

  30. Hammer, B., Rechtien, A., Strickert, M., Villmann, T.: Rule extraction from self-organizing networks. Lecture Notes in Computer Science 2415 (2002) 877-883

    Article  Google Scholar 

  31. Lehtimäki, P., Raivio, K., Simula, O.: Self-organizing operator maps in complex system analysis. Lecture Notes in Computer Science 2714 (2003) 622-629

    Google Scholar 

  32. Malone, J., McGarry, K., Wermter, S., Bowerman, C.: Data mining using rule extraction from Kohonen self-organising maps. Neural Computing & Applica-tions 15(1) (2005) 9-17

    Article  Google Scholar 

  33. Drobics, M., Bodenhofer, U., Winiwarter, W.: Mining clusters and corresponding interpretable descriptions - a three-stage approach. Expert Systems 19(4) (2002) 224-234

    Article  Google Scholar 

  34. Pal, N.R., Laha, A., Das, J.: Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images. Interna-tional Journal of Remote Sensing 26(10) (2005) 2219-2240

    Article  Google Scholar 

  35. Simon, G., Lendasse, A., Cottrell, M., Fort, J.C., Verleysen, M.: Time series fore-casting: obtaining long term trends with self-organizing maps. Pattern Recog-nition Letters 26(12) (2005) 1795-1808

    Article  Google Scholar 

  36. Simon, G., Lendasse, A., Cottrell, M., Fort, J.C., Verleysen, M.: Double quan-tization of the regressor space for long-term time series prediction: method and proof of stability. Neural Networks 17(8-9) (2004) 1169-1181

    Article  MATH  Google Scholar 

  37. Lehtokangas, M., Saarinen, J., Kaski, K., Huuhtanen, P.: A network of autoregressive processing units for time series modeling. Applied Mathematics and Computation 75(2-3) (1996) 151-165

    Article  MATH  Google Scholar 

  38. Vesanto, J.: Using the SOM and local models in time-series prediction. In: Pro-ceedings of the Workshop on Self-Organizing Maps (WSOM’97), Espoo, Finland (1997)209-214

    Google Scholar 

  39. Koskela, T., Varsta, M., Heikkonen, J., Kaski, S.: Time series prediction using recurrent SOM with local linear models. International Journal of Knowledge-based Intelligent Engineering Systems 2(1) (1998) 60-68

    Google Scholar 

  40. Sfetsos, A., Siriopoulos, C.: Time series forecasting with a hybrid clustering scheme and pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics A-34(3) (2004) 399-405

    Google Scholar 

  41. Poliker, S., Geva, A.: Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction. Pattern Recognition Letters 20(14) (1999) 1519-1532

    Article  Google Scholar 

  42. Sanchez-Maroño, N., Fontela-Romero, O., Alonso-Betanzos, A., Guijarro-Berdiñas, B.: Self-organizing maps and functional networks for local dynamic modeling. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN’95). (2003) 39-44

    Google Scholar 

  43. Pavlidis, N.G., Tasoulis, D., Plagianakos, V., Vrahatis, M.: Computational intelligence methods for financial time series modeling. International Journal of Bifurcation and Chaos 16(7) (2006) 2053-2062

    Article  MATH  MathSciNet  Google Scholar 

  44. Walter, J., Ritter, H., Schulten, K.: Non-linear prediction with self-organizing map. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN’90). Volume 1. (1990) 587-592

    Google Scholar 

  45. Stokbro, K., Umberger, D.K., Hertz, J.A.: Exploiting neurons with localized receptive fields to learn chaos. Complex Systems 4(3) (1990) 603-622

    MATH  Google Scholar 

  46. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4(4) (1993) 558-569

    Article  Google Scholar 

  47. Fritzke, B.: Incremental learning of local linear mappings. In: Proceedings of the International Conference On Artificial Neural Networks (ICANN’95). (1995) 217-222

    Google Scholar 

  48. Tong, H.: Non-linear Time Series: A Dynamic System Approach. Oxford University Press (1993)

    Google Scholar 

  49. Barreto, G., Mota, J., Souza, L., Frota, R.: Nonstationary time series prediction using local models based on competitive neural networks. Lecture Notes in Computer Science 3029 (2004) 1146-1155

    Google Scholar 

  50. Principe, J.C., Wang, L.: Non-linear time series modeling with self-organizing feature maps. In: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing (NNSP’95). (1995) 11-20

    Google Scholar 

  51. Liao, T.W.: Clustering of time series data - a survey. Pattern Recognition 38(11) (2005) 1857-1874

    Article  MATH  Google Scholar 

  52. Keogh, E., Lin, J., Truppel, W.: Clustering of time series subsequences is meaningless: implications for previous and future research. In: Proceedings of the 3rd IEEE International Conference on Data Mining. (2003) 115-122

    Google Scholar 

  53. Chen, J.: Making subsequence time series clustering meaningful. In: Proceedings of the 5th IEEE International Conference on Data Mining. (2005) 1-8

    Google Scholar 

  54. Chappell, G.J., Taylor, J.G.: The temporal Kohonen map. Neural Networks 6(3) (1993) 441-445

    Article  Google Scholar 

  55. Barreto, G.A., Araújo, A.F.R.: Time in self-organizing maps: An overview of models. International Journal of Computer Research 10(2) (2001) 139-179

    Google Scholar 

  56. Principe, J., Euliano, N., Garani, S.: Principles and networks for self-organization in space-time. Neural Networks 15(8-9) (2002) 1069-1083

    Article  Google Scholar 

  57. Voegtlin, T.: Recursive self-organizing maps. Neural Networks 15(8-9) (2002) 979-991

    Article  Google Scholar 

  58. Baier, V.: Motion perception with recurrent self-organizing maps based models. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks (IJCNN’05). (2005) 1182-1186

    Google Scholar 

  59. Van Wijk, J., Van Selow, E.: Cluster and calendar based visualization of time se-ries data. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis’99). (1999) 4-9

    Google Scholar 

  60. Fu, T.C., Chung, F., Ng, V., Luk, R.: Pattern discovery from stock time series using self-organizing maps. In: Workshop Notes of KDD’2001 Workshop on Temporal Data. (2001) 27-37

    Google Scholar 

  61. Chicco, G., Napoli, R., Piglione, F.: Load pattern clustering for short-term load forecasting of anomalous days. In: Proceedings of the 2001 IEEE Porto Power Tech Conference (PPT’01). (2001) 1-6

    Google Scholar 

  62. Tsao, C.Y., Chen, S.H.: Self-organizing maps as a foundation for charting or geometric pattern recognition in financial time series. In: Proceedings of the IEEE International Conference on Computational Intelligence for Financial En-gineering. (2003) 387-394

    Google Scholar 

  63. Lin, J., Keogh, E., Lonardi, S.: Visualizing and discovering non-trivial patterns in large time series databases. Information Visualization 4(3) (2005) 61-82

    Article  Google Scholar 

  64. Guimarães, G.: Temporal knowledge discovery for multivariate time series with enhanced self-organizing maps. In: Proceedings of the IEEE-INNS-ENNS Inter-national Joint Conference on Neural Networks (IJCNN’00). (2000) 165-170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barreto, G.A. (2007). Time Series Prediction with the Self-Organizing Map: A Review. In: Hammer, B., Hitzler, P. (eds) Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73954-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73954-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73953-1

  • Online ISBN: 978-3-540-73954-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics