Advertisement

Associative Version of Italiano’s Decremental Algorithm for the Transitive Closure Problem

  • Anna Nepomniaschaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)

Abstract

We propose a natural implementation of Italiano’s algorithm for updating the transitive closure of directed graphs after deletion of an edge on a model of associative (content addressable) parallel systems with vertical processing (the STAR–machine). The associative version of Italiano’s decremental algorithm is given as procedure DeleteArc, whose correctness is proved and time complexity is evaluated. We compare implementations of Italiano’s decremental algorithm and its associative version and enumerate the main advantages of the associative version.

Keywords

Span Tree Transitive Closure Elementary Operation Path Query Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, C.C.: Content Addressable Parallel Processors. Van Nostrand Reinhold Company, New York (1976)Google Scholar
  2. 2.
    Frigioni, D., Miller, T., Nanni, U., Pasqualone, G., Schaefer, G., Zaroliagis, C.: An Experimental Study of Dynamic Algorithms for Directed Graphs. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 368–380. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Henzinger, M.R., King, V.: Fully Dynamic Biconnectivity and Transitive Closure. In: Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 664–672 (1995)Google Scholar
  4. 4.
    Ibaraki, T., Katoh, N.: On-Line Computation of Transitive Closure for Graphs. Information Processing Letters 16, 95–97 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Italiano, G.F.: Amortized Efficiency of a Path Retrieval Data Structure. Theoretical Computer Science 48(2-3), 273–281 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Italiano, G.F.: Finding Paths and Deleting Edges in Directed Acyclic Graphs. Information Processing Letters 28, 5–11 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nepomniaschaya, A.S.: Language STAR for Associative and Parallel Computation with Vertical Data Processing. In: Mirenkov, N. (ed.) Proc. of the Intern. Conf. Parallel Computing Technologies, pp. 258–265. World Scientific, Singapore (1991)Google Scholar
  8. 8.
    Nepomniaschaya, A.S., Dvoskina, M.A.: A Simple Implementation of Dijkstra’s Shortest Path Algorithm on Associative Parallel Processors. In: Fundamenta Informaticae, 43th edn., pp. 227–243. IOS Press, Amsterdam (2000)Google Scholar
  9. 9.
    La Poutré, J.A., van Leeuwen, J.: Maintenance of Transitive Closure and Transitive Reduction of Graphs. In: Göttler, H., Schneider, H.-J. (eds.) WG 1987. LNCS, vol. 314, pp. 106–120. Springer, Heidelberg (1988)Google Scholar
  10. 10.
    Yellin, D.M.: Speeding up Dynamic Transitive Closure for Bounded Degree Graphs. Acta Informatica 30(4), 369–384 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Anna Nepomniaschaya
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division of the Russian Academy of Sciences, pr. Lavrentieva, 6, Novosibirsk, 630090Russia

Personalised recommendations