Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction over Pd(110) Revealed by Asynchronous Cellular Automata Simulation

  • Vladimir Elokhin
  • Andrey Matveev
  • Vladimir Gorodetskii
  • Evgenii Latkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)


The dynamic behaviour of the CO oxidation reaction over Pd(110) has been studied by means of probabilistic asynchronous cellular automata (Dynamic Monte-Carlo). The influence of the internal parameters on the shapes of surface concentration waves obtained in simulations under the limited surface diffusion intensity conditions has been studied. The hysteresis in oscillatory behaviour has been found under step-by-step variation of oxygen partial pressure. Two different oscillatory regimes could exist at one and the same parameters of the reaction. The parameters of oscillations (amplitude, period and the shape of spatio-temporal patterns on the surface) depend on the kinetic prehistory of the system. The possibility for the appearance of the cellular and turbulent patterns, spiral, target and stripe oxygen waves on the surface in the cases under study has been shown.


CO oxidation palladium oscillations surface waves asynchronous cellular automata hysteresis in oscillatory regimes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Imbihl, R., Ertl, G.: Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995)CrossRefGoogle Scholar
  2. 2.
    Latkin, E.I., Elokhin, V.I., Matveev, A.V., Gorodetskii, V.V.: The role of subsurface oxygen in oscillatory behavior of CO + O2 reaction over Pd metal catalysts: Monte Carlo model. J. Molec. Catal. A, Chem. 158, 161–166 (2000)CrossRefGoogle Scholar
  3. 3.
    Latkin, E.I., Elokhin, V.I., Gorodetskii, V.V.: Monte-Carlo model of oscillatory CO oxidation having regard to the change of catalytic properties due to the adsorbate-induced Pt(100) structural transformation. J. Molec. Catal. A, Chem. 166, 23–30 (2001)CrossRefGoogle Scholar
  4. 4.
    Gorodetskii, V.V., Matveev, A.V., Kalinkin, A.V., Niewenhuys, B.E.: Mechanism for CO oxidation and oscillatory reactions on Pd tip and Pd(110) surfaces: FEM, TPR, XPS studies. Chem. for Sustain. Dev. 11, 67–74 (2003)Google Scholar
  5. 5.
    Gorodetskii, V.V., Matveev, A.V., Podgornov, E.A., Zaera, F.: Study of the low-temperature reaction between CO and O2 over Pd and Pt surfaces. Topics in Catalysis 32, 17–28 (2005)CrossRefGoogle Scholar
  6. 6.
    Ertl, G.: Oscillatory catalytic reactions at single-crystal surfaces. Adv. Catal. 37, 213 (1990)CrossRefGoogle Scholar
  7. 7.
    Vishnevskii, A.L., Latkin, E.I., Elokhin, V.I.: Autowaves on catalyst surface caused by carbon monoxide oxidation kinetics: Imitation model. Surf. Rev. Lett. 2, 459–469 (1995)CrossRefGoogle Scholar
  8. 8.
    Gorodetskii, V.V., Drachsel, W.: Kinetic oscillations and surface waves in catalytic CO+ O 2 reaction on Pt surface: Field electron microscope, field ion microscope and high resolution electron energy loss studies. Appl. Catal. A: General 188, 267–275 (1999)CrossRefGoogle Scholar
  9. 9.
    Lauterbach, J., Bonilla, G., Fletcher, T.D.: Non-linear phenomena during CO oxidation in the mbar pressure range: a comparison between Pt/SiO 2 and Pt(100). Chem. Eng. Sci. 54, 4501–4512 (1999)CrossRefGoogle Scholar
  10. 10.
    Jakubith, S., Rotermund, H.H., Engel, W., von Oertzen, A., Ertl, G.: Spatio-temporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vladimir Elokhin
    • 1
  • Andrey Matveev
    • 1
  • Vladimir Gorodetskii
    • 1
  • Evgenii Latkin
    • 1
  1. 1.Boreskov Institute of Catalysis SB RAS, Prosp. Akad. Lavrentieva, 5, 630090, Novosibirsk, Russian Federation 

Personalised recommendations