A Categorical Observation of Timed Testing Equivalence

  • Natalya Gribovskaya
  • Irina Virbitskaite
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)


Timed transition systems are a widely studied model for real-time systems. The intention of the paper is to show the applicability of the general categorical framework of open maps to the setting of testing equivalence on timed transition systems, in order to transfer general concepts of equivalences to the model. In particular, we define a category of timed transition systems, whose morphisms are to be thought of as simulations, and an accompanying (sub)category of observations, to which the corresponding notion of open maps is developed. We then use the open maps framework to obtain an abstract bisimilarity which is established to coincide with timed testing equivalence.


Clock Constraint Clock Variable Clock Valuation Time Transition System Weak Bisimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures. In: Venturini Zilli, M. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol. 280, pp. 1–20. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    Alur, R., Dill, D.: The theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henziger, T.A.: Logics and models of real time: a survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    Andreeva, M.V., Bozhenkova, E.N., Virbitskaite, I.B.: Analysis of timed concurrent models based on testing equivalence. Fundamenta Informaticae 43(1–4), 1–20 (2000)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bihler, E., Vogler, W.: Timed Petri Nets: Efficiency of asynchronous systems. In: Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS, vol. 3185, pp. 25–58. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Badouel, E., Bednarczyk, M., Darondeau, P.: Generalized automata and their net representations. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) Unifying Petri Nets. LNCS, vol. 2128, pp. 304–345. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Borceux, F.: Handbook of Categorical Algebra, vol. 2(3). Encyclopedia of Mathematics and its Applications, vol. 51(52). Cambridge University Press (1994)Google Scholar
  8. 8.
    Cattani, G.L., Sassone, V.: Higher dimentional transition systems. In: Proc. LICS 1996, pp. 55–62 (1996)Google Scholar
  9. 9.
    Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Cleaveland, R., Zwarico, A.E.: A theory of testing for real-time. In: Proc. LICS 1991, pp. 110–119 (1991)Google Scholar
  11. 11.
    Fiore, M., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In: Proc. LICS 1999, pp. 214–225 (1999)Google Scholar
  12. 12.
    Fahrenberg, U.: A Category of Higher-Dimensional Automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 187–201. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    van Glabbeek, R.J.: The linear time – branching time spectrum II: the semantics of sequential systems with silent moves. Extended abstract. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement of action. In: Kreczmar, A., Mirkowska, G. (eds.) Mathematical Foundations of Computer Science 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989)Google Scholar
  15. 15.
    Goltz, U., Wehrheim, H.: Causal testing. In: Penczek, W., Szałas, A. (eds.) Mathematical Foundations of Computer Science 1996. LNCS, vol. 1113, pp. 394–406. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 226–251. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  17. 17.
    Hune, T., Nielsen, M.: Bisimulation and open maps fot timed transition systems. Fundamenta Informaticae 38, 61–77 (1999)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Jacobs, B., Rutten, J.: A tutorial on (Co)algebras and (Co)induction. EATCS Bulletin 62, 222–259 (1997)zbMATHGoogle Scholar
  19. 19.
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and Computation 127(2), 164–185 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    De Nicola, R., Hennessy, M.: Testing equiavalence for processes. Theoretical Computer Science 34, 83–133 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Nielsen, M., Cheng, A.: Observing behaviour categorically. In: Thiagarajan, P.S. (ed.) Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 1026, pp. 263–278. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Steffen, B., Weise, C.: Deciding testing equivalence for real-time processes with dense time. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 703–713. Springer, Heidelberg (1993)Google Scholar
  23. 23.
    Virbitskaite, I.B., Gribovskaya, N.S.: Open maps and observational equivalences for timed partial order models. Fundamenta Informaticae 60(1-4), 383–399 (2004)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 176–188. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  25. 25.
    Winskel, G., Nielsen, M.: Models for concurrency. Handbook of Logic in Computer Science 4 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Natalya Gribovskaya
    • 1
  • Irina Virbitskaite
    • 1
  1. 1.A.P. Ershov Institute of Informatics Systems, Siberian Division of the Russian Academy of Sciences, 6, Acad. Lavrentiev avenue, 630090, NovosibirskRussia

Personalised recommendations