Advertisement

Pedestrian and Crowd Dynamics Simulation: Testing SCA on Paradigmatic Cases of Emerging Coordination in Negative Interaction Conditions

  • Stefania Bandini
  • Mizar Luca Federici
  • Sara Manzoni
  • Giuseppe Vizzari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)

Abstract

The paper presents a set of theoretical experiments performed to evaluate Situated Cellular Agent (SCA) approach within pedestrian dynamics research context. SCA is a modeling and simulation approach based on Multi Agent Systems principles that derives from Cellular Automata. In particular, we focus on two emerging phenomena (freezing by heating and lane formation phenomena) that have been empirically observed and already modeled by analytical particle–based models and Cellular Automata–based models.

Keywords

Multi-Agent System Crowd Simulation Paradigmatic Cases Lane Formation Freezing by Heating Situated Cellular Agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schreckenberg, M., Sharma, S.: Pedestrian and Evacuation Dynamics. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  2. 2.
    Bandini, S., Federici, M.L., Manzoni, S., Vizzari, G.: Towards a methodology for situated cellular agent based crowd simulations. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bandini, S., Manzoni, S., Simone, C.: Enhancing cellular spaces by multilayered multi agent situated systems. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 156–167. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Ferber, J.: Multi-Agent Systems. Addison-Wesley, Harlow (UK) (1999)Google Scholar
  5. 5.
    Helbing, D.: A fluid-dynamic model for the movement of pedestrians. Complex Systems 6, 391–415 (1992)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Blue, V.J., Adler, J.: Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Trasportation Research Part B 35, 293–312 (2001)CrossRefGoogle Scholar
  7. 7.
    Klupfel, H.: A Cellular Automaton Model for Crowd Movement and Egress Simulation. PhD thesis, Universitat Duisburg-Essen (2003), http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-08012003-092540/
  8. 8.
    Morishita, S., Shiraishi, T.: Evaluation of billboards based on pedestrian flow in the concourse of the station. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 716–719. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Batty, M., Couclelis, H., Eichen, M.: Urban systems as cellular automata. 24 (1997)Google Scholar
  10. 10.
    Torrens, P.: Cellular automata and multi-agent systems as planning support tools. Planning Support Systems in Practice, 205–222 (2002)Google Scholar
  11. 11.
    Bandini, S., Manzoni, S., Vizzari, G.: Multi-agent approach to localization problems: the case of multilayered multi agent situated system. Web Intelligence and Agent Systems: An International Journal 2, 155–166 (2004)Google Scholar
  12. 12.
    Bandini, S., Manzoni, S., Vizzari, G.: SCA: a model to simulate crowding dynamics. Special Issues on Cellular Automata. IEICE Transactions on Information and Systems E87-D, 669–676 (2004)Google Scholar
  13. 13.
    Bandini, S., Manzoni, S., Simone, C.: Dealing with space in multi-agent system: a model for situated MAS. In: Castelfranchi, C., Johnson, L. (eds.) Proceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2002), July 15-19, 2002, pp. 1183–1190. ACM Press, New York (2002)CrossRefGoogle Scholar
  14. 14.
    Bandini, S., Manzoni, S., Pavesi, G., Simone, C.: L*MASS: A language for situated multi-agent systems. In: Esposito, F. (ed.) AI*IA 2001: Advances in Artificial Intelligence. LNCS (LNAI), vol. 2175, pp. 249–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Schadschneider, A.: Cellular automaton approach to pedestrian dynamics -theory (Pedestrian and Evacuation Dynamics) 75–86 (2001)Google Scholar
  16. 16.
    Still, G.K.: Crowd Dynamics. PhD thesis, University of Warwick, Warwick (2000), http://www.crowddynamics.com/
  17. 17.
    Helbing, D., Farkas, J.I., Molnàr, P., Vicsek, T.: Simulation of Pedestrian Crowds in Normal and Evacuation Situations. In: Proccedings of PED01, Pedestrian and Evacuation Dynamics, pp. 21–58. Springer, Heidelberg (2002)Google Scholar
  18. 18.
    Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Trasportation Research Part B 35, 293–312 (2001)CrossRefGoogle Scholar
  19. 19.
    Bandini, S., Manzoni, S., Simone, C.: Situated Cellular Agents in Non-uniform Spaces. In: Malyshkin, V. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 10–19. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stefania Bandini
    • 1
  • Mizar Luca Federici
    • 1
  • Sara Manzoni
    • 1
  • Giuseppe Vizzari
    • 1
  1. 1.Complex Systems and Artificial Intelligence Research Center, University of Milan–BicoccaItaly

Personalised recommendations