Advertisement

Dynamic Load Balancing of Black-Box Applications with a Resource Selection Mechanism on Heterogeneous Resources of the Grid

  • Valeria V. Krzhizhanovskaya
  • Vladimir V. Korkhov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)

Abstract

In this paper we address the critical issues of efficient resource management and high-performance parallel distributed computing on the Grid by introducing a new hierarchical approach that combines a user-level job scheduling with a dynamic load balancing technique that automatically adapts a black-box distributed or parallel application to the heterogeneous resources. The algorithm developed dynamically selects the resources best suited for a particular task or parallel process of the executed application, and optimizes the load balance based on the dynamically measured resource parameters and estimated requirements of the application. We describe the proposed algorithm for automated load balancing, paying attention to the influence of resource heterogeneity metrics, demonstrate the speedup achieved with this technique for different types of applications and resources, and propose a way to extend the approach to a wider class of applications.

Keywords

dynamic load balancing resource management high-performance computing Grid heterogeneous resources parallel distributed application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krzhizhanovskaya, V.V., Korkhov, V.V.: Problem-Solving Environments for Simulation and Optimization on Heterogeneous Distributed Computational Resources of the Grid. In: PACO 2006. Proceedings of the Third International Conference on Parallel Computations and Control Problems, Moscow, Russia, pp. 917–932. Trapeznikov Institute of Control Sciences RAS, Moscow (2006)Google Scholar
  2. 2.
    Krzhizhanovskaya, V.V., Sloot, P.M.A., Gorbachev, Y.E.: Grid-based Simulation of Industrial Thin-Film Production. Simulation: Transactions of the Society for Modeling and Simulation International 81(1), 77–85 (2005)CrossRefGoogle Scholar
  3. 3.
    Krzhizhanovskaya, V.V., Korkhov, V.V., Tirado-Ramos, A., Groen, D.J., Shoshmina, I.V., Valuev, I.A., Morozov, I.V., Malyshkin, N.V., Gorbachev, Y.E., Sloot, P.M.A.: Computational Engineering on the Grid: Crafting a Distributed Virtual Reactor. In: Second IEEE International Conference on e-Science and Grid Computing (e-Science’06), p. 101 (2006)Google Scholar
  4. 4.
    Krzhizhanovskaya, V.V., et al.: A 3D Virtual Reactor for Simulation of Silicon-Based Film Production. In: Proceedings of the ASME/JSME PVP Conference. ASME PVP-vol. 491(2), pp. 59–68, PVP2004-3120 (2004)Google Scholar
  5. 5.
    Krzhizhanovskaya, V.V., Zatevakhin, M.A., Ignatiev, A.A., Gorbachev, Y.E., Sloot, P.M.A.: Distributed Simulation of Silicon-Based Film Growth. In: Wyrzykowski, R., Dongarra, J.J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 879–888. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Korkhov, V.V., Krzhizhanovskaya, V.V.: Workload Balancing in Heterogeneous Grid Environment: A Virtual Reactor Case Study. In: Proceedings of the Second International Conference Distributed Computing and Grid Technologies in Science and Education, pp. 103–113. Publ: JINR, Dubna, D11-2006-167 (2006)Google Scholar
  7. 7.
    Korkhov, V.V., Krzhizhanovskaya, V.V.: Benchmarking and Adaptive Load Balancing of the Virtual Reactor Application on the Russian-Dutch Grid. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 530–538. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Korkhov, V.V., Krzhizhanovskaya, V.V., Sloot, P.M.A.: A Grid Based Virtual Reactor: Parallel performance and adaptive load balancing. Revised version submitted to the Journal of Parallel and Distributed Computing (2007)Google Scholar
  9. 9.
    CrossGrid EU Science project, http://www.eu-CrossGrid.org
  10. 10.
  11. 11.
    Fox, G.: Grid Computing environments. IEEE Computers in Science and Engineering 10, 68–72 (2003)Google Scholar
  12. 12.
    Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.): Grid Resource Management: State of the Art and Future Trends. Kluwer Academic Publishers, Boston (2004)zbMATHGoogle Scholar
  13. 13.
    Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, Seattle (2003)Google Scholar
  14. 14.
    Buyya, R., Cortes, T., Jin, H.: Single System Image. The International Journal of High Performance Computing Applications 15(2), 124–135 (2001)CrossRefGoogle Scholar
  15. 15.
    Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The Internet Operating System: Middleware for Adaptive Distributed Computting. The International Journal of High Performance Computing Applications 20(4), 467–480 (2006)CrossRefGoogle Scholar
  16. 16.
    Sonmez, O.O., Gursoy, A.: A Novel Economic-Based Scheduling Heuristic for Computational Grids. The International Journal of High Performance Computing Applications 21(1), 21–29 (2007)CrossRefGoogle Scholar
  17. 17.
    Boyera, W.F., Hura, G.S.: Non-evolutionary algorithm for scheduling dependent tasks in distributed heterogeneous computing environments. J. Parallel Distrib. Comput. 65, 1035–1046 (2005)CrossRefGoogle Scholar
  18. 18.
    Collins, D.E., George, A.D.: Parallel and Sequential Job Scheduling in Heterogeneous Clusters: A Simulation Study Using Software in the Loop. SIMULATION 77, 169–184 (2001)CrossRefGoogle Scholar
  19. 19.
    Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: On the Complexity of Task Allocation. Complexity 3, 52–60 (1997)CrossRefMathSciNetGoogle Scholar
  20. 20.
    de Ronde, J.F., Schoneveld, A., Sloot, P.M.A.: Load Balancing by Redundant Decomposition and Mapping. Future Generation Computer Systems 12(5), 391–407 (1997)CrossRefGoogle Scholar
  21. 21.
    Karatza, H.D., Hilzer, R.C.: Parallel Job Scheduling in Homogeneous Distributed Systems. SIMULATION 79(5-6), 287–298 (2003)CrossRefGoogle Scholar
  22. 22.
    Barak, A., Wheeler, R.G., Guday, S.: The MOSIX Distributed Operating System. LNCS, vol. 672. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  23. 23.
    Overeinder, B.J., Sloot, P.M.A., Heederik, R.N., Hertzberger, L.O.: A Dynamic Load Balancing System for Parallel Cluster Computing. Future Generation Computer Systems 12(1), 101–115 (1996)CrossRefGoogle Scholar
  24. 24.
    Shao, G., et al.: Master/Slave Computing on the Grid. In: Proceedings of Heterogeneous Computing Workshop, pp. 3–16. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  25. 25.
    Sinha, S., Parashar, M.: Adaptive Runtime Partitioning of AMR Applications on Heterogeneous Clusters. In: Proceedings of 3rd IEEE Intl. Conference on Cluster Computing, pp. 435–442 (2001)Google Scholar
  26. 26.
    David, R., et al.: Source Code Transformations Strategies to Load-Balance Grid Applications. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 82–87. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Teresco, J.D., et al.: Resource-Aware Scientific Computation on a Heterogeneous Cluster. Computing in Science & Engineering 7(2), 40–50 (2005)CrossRefGoogle Scholar
  28. 28.
    Kufrin, R.: PerfSuite: An Accessible, Open Source Performance Analysis Environment for Linux. In: 6th International Conference on Linux Clusters, Chapel Hill, NC (2005)Google Scholar
  29. 29.
    Lu, C., Lau, S.-M.: An Adaptive Load Balancing Algorithm forHeterogeneous Distributed Systems with Multiple Task Classes. In: International Conference on Distributed Computing Systems (1996)Google Scholar
  30. 30.
    Lan, Z., Taylor, V.E., Bryan, G.: Dynamic Load Balancing of SAMR Applications on Distributed Systems. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing (2001)Google Scholar
  31. 31.
    Zhang, Y., Hakozaki, K., Kameda, H., Shimizu, K.: A performance comparison of adaptive and static load balancing in heterogeneous distributed systems. In: The 28th Annual Simulation Symposium, p. 332 (1995)Google Scholar
  32. 32.
    Germain-Renaud, C., Loomis, C., Moscicki, J.T., Texier, R.: Scheduling for Responsive Grids. Grid Computing Journal (Special Issue on EGEE User Forum) (2006)Google Scholar
  33. 33.
    Moscicki, J.T., Bubak, M., Lee, H.-C., Muraru, A., Sloot, P.: Quality of Service on the Grid with User Level Scheduling. In: Cracow Grid Workshop Proceedings (2006)Google Scholar
  34. 34.
    Calvin, J.M.: A One-Dimensional Optimization Algorithm and Its Convergence Rate under the Wiener Measure. Journal of Complexity N 17, 306–344 (2001)CrossRefMathSciNetGoogle Scholar
  35. 35.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Valeria V. Krzhizhanovskaya
    • 1
    • 2
  • Vladimir V. Korkhov
    • 1
    • 2
  1. 1.University of Amsterdam, Faculty of Science, Section Computational Science 
  2. 2.St. Petersburg State Polytechnic UniversityRussia

Personalised recommendations