Object Serialization and Remote Exception Pattern for Distributed C++/MPI Application

  • Karol Bańczyk
  • Tomasz Boiński
  • Henryk Krawczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)


MPI is commonly used standard in development of scientific applications. It focuses on interlanguage operability and is not very well object oriented. The paper proposes a general pattern enabling design of distributed and object oriented applications. It also presents its sample implementations and performance tests.


MPI object serialization remote exception handling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Message Passing Interface Forum: MPI-2: Extensions to Message-Passing Interface. Message Passing Interface Forum (1997)Google Scholar
  2. 2.
    Andrew, H., David, T.: The Pragmatic Programmer: From Journeyman to Master. Addison Wesley Longman, Redwood City (2000)Google Scholar
  3. 3.
    Bańczyk, K., Boiński, T., Krawczyk, H.: Parallelisation of genetic algorithms for solving university timetabling problems. In: PARELEC 2006, pp. 325–330. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  4. 4.
    Chan, H.N., et al.: An Exception Handling Mechanism for the Concurrent Invocation Statement. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 699–709. Springer, Heidelberg (2005)Google Scholar
  5. 5.
  6. 6.
  7. 7.
    National Committee for Information Technology Standards: International Standard ISO/IEC 14882, Programming Language - C++ Approved by NCITS as an American National Standard,
  8. 8.
  9. 9.
    Sosnoski, D.: Type-Specific Collections Library,
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Karol Bańczyk
    • 1
  • Tomasz Boiński
    • 1
  • Henryk Krawczyk
    • 1
  1. 1.Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk 

Personalised recommendations