Parallel Broadband Finite Element Time Domain Algorithm Implemented to Dispersive Electromagnetic Problem

  • Boguslaw Butrylo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4671)


The numerical analysis of some broadband electromagnetic fields and frequency-dependent materials using a time domain method is the main subject of this paper. The spatial and time-dependent distribution of the electromagnetic field is approximated by the finite element method. The parallel form of the algorithm valid for some linear materials, and the formulation of the FE code for a dispersive electromagnetic problem are presented and compared. The complex forms of these algorithms have an effect on the memory and computational costs of the distributed formulation. The properties of the algorithm are estimated using high performance cluster of workstations.


Domain Decomposition Critical Section Dispersive Material Memory Cost Precondition Conjugate Gradient Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vollaire, C., Nicolas, L., Nicolas, A.: Parallel computing for the finite element method. The European Physical Journal Applied Physics 1, 305–314 (1998)CrossRefGoogle Scholar
  2. 2.
    Buyya, R.: High Performance Cluster Computing, vol. 2. Prentice Hall PTR, New Jersey (1999)Google Scholar
  3. 3.
    Christopoulos, Ch.: Multi-scale modeling in time-domain electromagnetics. International Journal of Electronics and Communications 57(2), 100–110 (2003)CrossRefGoogle Scholar
  4. 4.
    Butrylo, B., Musy, F., Nicolas, L., Parrussel, R., Scorretti, R., Vollaire, C.: A survey of parallel solvers for the finite element method in computational electromagnetics. Compel 23(2), 531–546 (2004)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Navsariwala, U., Gedney, S.: An Efficient Implementation of the Finite-Element Time Domain Algorithm on Parallel Computers Using a Finite-Element Tearing and Interconnecting Algorithm. Microwave and Optical Technology Letters 16(4) (1997)Google Scholar
  6. 6.
    Vollaire, C., Nicolas, L., Nicolas, A.: Finite Element and Absorbing Boundary Conditions for scattering problems on a parallel distributed memory computer. IEEE Transactions on Magnetics 33(2), 1448–1451 (1997)CrossRefGoogle Scholar
  7. 7.
    Monk, R.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  8. 8.
    Edelvik, F., Strand, B.: Frequency dispersive materials for 3-D hybrid solvers in time domain. IEEE Transactions on Antennas and Propagation 51(6), 1199–1205 (2003)CrossRefGoogle Scholar
  9. 9.
    Maradei, F.: A frequency-dependent WETD formulation for dispersive materials. IEEE Transactions on Magnetics 37(5), 3303–3306 (2001)CrossRefGoogle Scholar
  10. 10.
    Butrylo, B., Nicolas, A., Nicolas, L., Vollaire, C.: Performance of Preconditioners for the Distributed Vector Finite Element Time Domain Algorithm. IEEE Transactions on Magnetics 41(5), 1716–1719 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Boguslaw Butrylo
    • 1
  1. 1.Bialystok Technical University, Wiejska 45D, 15-351 BialystokPoland

Personalised recommendations