Skip to main content

Part of the book series: Springer Series in Wood Science ((SSWOO))

  • 2355 Accesses

Cellulose represents a naturally occurring linear macromolecular chain of 1–4-linked β-D-glucopyranose and exhibits great chemical variability and potential in applications. The cell walls of all plants contain fibers of cellulose. Cellulose has long been harvested as commercial fibers from the seed hairs of cotton (over 94% cellulose), as bast fibers (60-–80% cellulose) from flax, hemp, sisal, jute and ramie or as wood (40–55% cellulose), which is a common building material or is used as a source for purified cellulose. The chemical compositions of some known species are collected in Table 1.1, which, when purified, serve as cellulose sources. Wood represents a composite material with cellulose as a major part combined in excellent form with lignin and hemicelluloses, creating a unique high-strength and durable material, and recently came again into focus as a renewable energy resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atalla RH (ed) (1987) The structures of cellulose–characterization of the solid states. ACS symposium series no 340. American Chemical Society, Washington

    Google Scholar 

  • Atalla RH (1999) Celluloses. In: Pinto BM (ed) Comprehensive natural products chemistry, vol 3: carbohydrates and their derivatives including tannins, cellulose, and related lignins. Elsevier, Amsterdam, pp 529–598

    Google Scholar 

  • Bikales NM, Segal L (eds) (1971) Cellulose and cellulose derivatives. Wiley-Interscience.New York

    Google Scholar 

  • French AD (2000) Structure and biosynthesis of cellulose. Part I: structure. In: Kung S-D, Yang S-F (eds) Discoveries in plant biology, vol 3. World Scientific, Singapore, pp 163–197

    Google Scholar 

  • French AD, Gardner KH (eds) (1980) Fiber diffraction methods. ACS symposium series no 141. American Chemical Society, Washington

    Google Scholar 

  • Freudenberg K (1933) Tannin, Cellulose, Lignin. Springer, Berlin

    Google Scholar 

  • Fyfe CA (1983) Solid state NMR for chemists. CFC, Guelph

    Google Scholar 

  • Haworth WN (1929) The constitution of sugars. Edward & Arnold, London

    Google Scholar 

  • Haworth WN (1932) Die Konstitution der Kohlenhydrate. Steinkopff, Dresden

    Google Scholar 

  • Hermans PH (1949) Physics and chemistry of cellulose fibres. Elsevier, New York

    Google Scholar 

  • Hess K (1928) Die Chemie der Zellulose und ihrer Begleiter, XX. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Hon DN-S (1996) Functional polymers: a new dimensional creativity in lignocellulosic chemistry. In: Hon DN-S (ed) Chemical modification of lignocellulosic materials. Dekker, New York, pp 1–10

    Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vols 1 and 2. Wiley-VCH, Weinheim

    Google Scholar 

  • Klemm D, Schmauder H-P, Heinze T (2004) Cellulose. In: de Baets S, Vandamme E, Steinbüchel A (eds) Biopolymers, vol 6. Polysaccharides II: polysaccharides from eukaryotes. Wiley-VCH, Weinheim, pp 275–319

    Google Scholar 

  • Krässig HA (1993) Cellulose structure, accessibility, and reactivity. Gordon and Breach, New York

    Google Scholar 

  • Krüger D (1933) Zelluloseazetate. Steinkopff, Dresden

    Google Scholar 

  • Marchessault RH, Sundararajan PR (1983) Cellulose. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic, New York, pp 11–95

    Google Scholar 

  • Mark H (1932) Physik und Chemie der Cellulose, XV. In: Herzog RO (ed) Technologie der Textilfasern, vol I, part 1. Springer, Berlin

    Google Scholar 

  • Marsh JT, Wood FC (1939) An introduction to the chemistry of cellulose. Van Nostrand, New York

    Google Scholar 

  • Marx-Figini M (1982) The control of molecular weight and molecular-weight distribution in the biogenesis of cellulose. In: Brown RM Jr (ed) Cellulose and other natural polymer systems. Plenum, New York, pp 243–271

    Google Scholar 

  • Meyer KH (1950) Natural and synthetic high polymers, vol IV. Interscience, New York

    Google Scholar 

  • Meyer KH, Mark H (1930) Der Aufbau der hochpolymeren organischen Naturstoffe. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Meyer KH, Mark H (1950) Makromolekulare Chemie, 2nd edn. Geest & Portig, Leipzig

    Google Scholar 

  • Morawetz H (1985) Polymers–the origin and growth of a science. Wiley, New York

    Google Scholar 

  • Ott E (ed) (1943) Cellulose and cellulose derivatives, vol V. Interscience, New York

    Google Scholar 

  • Ott E, Spurlin HM, Grafflin MW (eds) (1955) Cellulose and cellulose derivatives, part III. High polymers, vol 5, 2nd edn. Interscience, New York

    Google Scholar 

  • Priesner C (1980) H. Staudinger, H. Mark und K. H. Meyer – Thesen zur Größe und Struktur der Makromoleküle. Verlag Chemie, Weinheim

    Google Scholar 

  • Pummerer R (ed) (1953) Chemische Textilfasern–Filme und Folien. Enke, Stuttgart

    Google Scholar 

  • Purves CB (1946) Chemical nature of cellulose and its derivatives. In: Ott E (ed) Cellulose and cellulose derivatives. High polymers, vol 5. Interscience, New York, pp 29–76, 88–112

    Google Scholar 

  • Saechtling H (1935) Hochpolymere organische Naturstoffe. Vieweg, Braunschweig

    Google Scholar 

  • Schulz GV, Marx M (1954) Über Molekulargewichte und Molekulargewichtsverteilungen nativer Cellulosen. Makromol Chem 14:52–95

    Article  CAS  Google Scholar 

  • Sisson WA (1946) X-ray examination. In: Ott E (ed) Cellulose and cellulose derivatives. High polymers, vol 5. Interscience, New York, pp 203–292

    Google Scholar 

  • Staudinger H (1932) Die hochpolymeren Verbindungen. Kautschuk und Cellulose, XV. Springer, Berlin

    Google Scholar 

  • Stuart HA (ed) (1955) Die Physik der Hochpolymeren, vol 3. Springer, Berlin

    Google Scholar 

  • Walton AG, Blackwell J (1973) Biopolymers. Academic, New York

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidleberg

About this chapter

Cite this chapter

(2008). Introduction. In: Crystalline Cellulose and Derivatives. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73934-0_1

Download citation

Publish with us

Policies and ethics