Skip to main content

Bug Versus Bug: Humoral Immune Responses in Drosophila melanogaster

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 21))

Insects mount a robust innate immune response against a wide array of microbial pathogens. For example, the fruit fly Drosphila melanogaster uses both cellular and humoral innate immune responses to combat pathogens. The hallmark of the Drosophila humoral immune response is the rapid induction of antimicrobial peptide genes in the fat body, the homolog of the mammalian liver. Expression of these antimicrobial peptide genes is rapidly induced by two immune signaling pathways, which respond to distinct microorganisms. The Toll pathway is activated by fungal and Gram-positive bacterial infections, whereas the IMD pathway responds to Gram-negative bacteria. In this chapter, we discuss recent advances in understanding the mechanisms involved in microbial recogni-tion, signal transduction, and immune protection mediated by these pathways, highlighting similarities and differences between Drosophila immune responses and mammalian innate immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5:441– 450

    Article  PubMed  CAS  Google Scholar 

  • Akimaru H, Hou DX, Ishii S (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nat Genet 17:211–214

    Article  PubMed  CAS  Google Scholar 

  • Asling B, Dushay MS, Hultmark D (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25:511–518

    Article  PubMed  CAS  Google Scholar 

  • Avila A, Silverman N, Diaz-Meco MT, Moscat J (2002) The Drosophila atypical protein kinase C-ref(2) p complex constitutes a conserved module for signaling in the toll pathway. Mol Cell Biol 22:8787–8795

    Article  PubMed  CAS  Google Scholar 

  • Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19:1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Belvin MP, Jin Y, Anderson KV (1995) Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev 9:783–793

    Article  PubMed  CAS  Google Scholar 

  • Bergmann A, Stein D, Geisler R, Hagenmaier S, Schmid B, Fernandez N, Schnell B, Nusslein-Volhard C (1996) A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech Dev 60:109–123

    Article  PubMed  CAS  Google Scholar 

  • Binari R, Perrimon N (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev 8:300–312

    Article  PubMed  CAS  Google Scholar 

  • Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J (2004) Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 5:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2:e14

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237:232–235

    Article  PubMed  CAS  Google Scholar 

  • Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3:711–722

    Article  PubMed  CAS  Google Scholar 

  • Brennan CA, Anderson KV (2004) Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol 22:457–483

    Article  PubMed  CAS  Google Scholar 

  • Brey PT (1998) The contributions of the Pasteur school of insect immunity in molecular mechanisms of immune responses in insects. Chapman & Hall, London

    Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  PubMed  CAS  Google Scholar 

  • Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B (2006) The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11:397–407

    Article  PubMed  CAS  Google Scholar 

  • Cha GH, Cho KS, Lee JH, Kim M, Kim E, Park J, Lee SB, Chung J (2003) Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-kappaB-dependent signaling pathways. Mol Cell Biol 23:7982–7991

    Article  PubMed  CAS  Google Scholar 

  • Chang CI, Ihara K, Chelliah Y, Mengin-Lecreulx D, Wakatsuki S, Deisenhofer J (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci USA 102:10279–10284

    Article  PubMed  CAS  Google Scholar 

  • Chang CI, Chelliah Y, Borek D, Mengin-Lecreulx D, Deisenhofer J (2006) Structure of trachael cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311:1761–1764

    Article  PubMed  CAS  Google Scholar 

  • Chaves-Carballo E (2005) Carlos Finlay and yellow fever: triumph over adversity. Mil Med 170:881–885

    PubMed  Google Scholar 

  • Chen FE, Huang DB, Chen YQ, Ghosh G (1998a) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391:410–413

    Article  PubMed  CAS  Google Scholar 

  • Chen W, White MA, Cobb MH (2002) Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem 277:49105–49110

    Article  PubMed  CAS  Google Scholar 

  • Chen YQ, Ghosh S, Ghosh G (1998b) A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nat Struct Biol 5:67–73

    Article  PubMed  Google Scholar 

  • Cherry S, Silverman N (2006) Host–pathogen interactions in Drosophila: new tricks from an old friend. Nat Immunol 7:911–917

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y, Stahl GL, Ezekowitz RAB (2005) Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106:2551–2558

    Article  PubMed  CAS  Google Scholar 

  • Choe KM, Werner T, Stöven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296:359–362

    Article  PubMed  CAS  Google Scholar 

  • Choe KM, Lee H, Anderson KV (2005) Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci USA 102:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Cookson BT, Cho HL, Herwaldt LA, Goldman WE (1989) Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect Immun 57:2223–2229

    PubMed  CAS  Google Scholar 

  • De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98:12590–12595

    Article  PubMed  CAS  Google Scholar 

  • De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata S, Lee BL, Iwanaga S, Lemaitre B, Brey PT (2002a) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev Cell 3:581–592

    Article  PubMed  CAS  Google Scholar 

  • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002b) The Toll and IMD pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579

    Article  PubMed  CAS  Google Scholar 

  • Delaney JR, Stoven S, Uvell H, Anderson KV, Engstrom Y, Mlodzik M (2006) Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 25:3068–3077

    Article  PubMed  CAS  Google Scholar 

  • Dimarcq JL, Hoffmann D, Meister M, Bulet P, Lanot R, Reichhart JM, Hoffmann JA (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 221:201–209

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4:e229

    Article  PubMed  CAS  Google Scholar 

  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6:946–953

    Article  PubMed  CAS  Google Scholar 

  • Drier EA, Steward R (1997) The dorsoventral signal transduction pathway and the Rel-like transcription factors in Drosophila. Semin Cancer Biol 8:83–92

    Article  PubMed  CAS  Google Scholar 

  • Drier EA, Huang LH, Steward R (1999) Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev 13:556–568

    Article  PubMed  CAS  Google Scholar 

  • Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, et al (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33:388–391

    Article  PubMed  CAS  Google Scholar 

  • Dushay MS, Åsling B, Hultmark D (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93:10343–10347

    Article  PubMed  CAS  Google Scholar 

  • Dutta J, Fan Y, Gupta N, Fan G, Gelinas C (2006) Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25:6800–6816

    Article  PubMed  CAS  Google Scholar 

  • Dziarski R, Platt KA, Gelius E, Steiner H, Gupta D (2003) Defect in neutrophil killing and increased susceptibility to infection with non-pathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102:689–697

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Hultmark D (2001) A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem Biophys Res Commun 284:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Engstrom Y, Kadalayil L, Sun SC, Samakovlis C, Hultmark D, Faye I (1993) kappa B-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 232:327–333

    Article  PubMed  CAS  Google Scholar 

  • Fernandez NQ, Grosshans J, Goltz JS, Stein D (2001) Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128:2963–2974

    PubMed  CAS  Google Scholar 

  • Ferrandon D, Jung AC, Criqui M, Lemaitre B, Uttenweiler-Joseph S, Michaut L, Reichhart J, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Filipe SR, Tomasz A, Ligoxygakis P (2005) Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 6:327–333

    Article  PubMed  CAS  Google Scholar 

  • Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE, Philpott DJ (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26:445– 459

    Article  PubMed  CAS  Google Scholar 

  • Geisler R, Bergmann A, Hiromi Y, Nusslein-Volhard C (1992) cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the I kappa B gene family of vertebrates. Cell 71:613–621

    Article  PubMed  CAS  Google Scholar 

  • Gelius E, Persson C, Karlsson J, Steiner H (2003) A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem Biophys Res Commun 306:988–994

    Article  PubMed  CAS  Google Scholar 

  • Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1:503–514

    Article  PubMed  CAS  Google Scholar 

  • Gesellchen V, Kuttenkeuler D, Steckel M, Pelte N, Boutros M (2005) An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep 6:979–984

    Article  PubMed  CAS  Google Scholar 

  • Gillespie SK, Wasserman SA (1994) Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol 14:3559–3568

    PubMed  CAS  Google Scholar 

  • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302:2126–2130

    Article  PubMed  CAS  Google Scholar 

  • Goldman WE, Klapper DG, Baseman JB (1982) Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun 36:782–794

    PubMed  CAS  Google Scholar 

  • Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640–644

    Article  PubMed  CAS  Google Scholar 

  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437

    Article  PubMed  CAS  Google Scholar 

  • Gross I, Georgel P, Kappler C, Reichhart JM, Hoffmann JA (1996) Drosophila immunity: a comparative analysis of the Rel proteins dorsal and Dif in the induction of the genes encoding diptericin and cecropin. Nucleic Acids Res 24:1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Guan R, Mariuzza RA (2007) Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol 15:127–134

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780

    Article  PubMed  CAS  Google Scholar 

  • Hedengren M, Åsling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837

    Article  PubMed  CAS  Google Scholar 

  • Heimpel AM, Harshbarger JC (1965) Symposium on microbial insecticides. V. Immunity in insects. Bacteriol Rev 29:397–405

    PubMed  CAS  Google Scholar 

  • Holland PM, Suzanne M, Campbell JS, Noselli S, Cooper JA (1997) MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J Biol Chem 272:24994–24998

    Article  PubMed  CAS  Google Scholar 

  • Hombria JC, Brown S (2002) The fertile field of Drosophila Jak/STAT signalling. Curr Biol 12:R569–R575

    Article  PubMed  Google Scholar 

  • Hou XS, Melnick MB, Perrimon N (1996) Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84:411– 419

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Yagi Y, Tanji T, Zhou S, Ip YT (2004) Multimerization and interaction of Toll and Spatzle in Drosophila. Proc Natl Acad Sci USA 101:9369–9374

    Article  PubMed  CAS  Google Scholar 

  • Huh JR, Foe I, Muro I, Chen CH, Seol JH, Yoo SJ, Guo M, Park JM, Hay BA (2007) The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J Biol Chem 282:2056–2068

    Article  PubMed  CAS  Google Scholar 

  • Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19

    Article  PubMed  CAS  Google Scholar 

  • Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576

    Google Scholar 

  • Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, Gonzalez-Crespo S, Tatei K, Levine M (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75:753–763

    Article  PubMed  CAS  Google Scholar 

  • Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci USA 98:15119–15124

    Article  PubMed  CAS  Google Scholar 

  • Isoda K, Nusslein-Volhard C (1994) Disulfide cross-linking in crude embryonic lysates reveals three complexes of the Drosophila morphogen dorsal and its inhibitor cactus. Proc Natl Acad Sci USA 91:5350 –5354

    Article  PubMed  CAS  Google Scholar 

  • Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, et al (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10:45–55

    Article  PubMed  CAS  Google Scholar 

  • Kambris Z, Brun S, Jang IH, Nam HJ, Romeo Y, Takahashi K, Lee WJ, Ueda R, Lemaitre B (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr Biol 16:808–813

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637–649

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, et al (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Liu G, Lundstrom A, Gelius E, Steiner H (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 95:10078–10082

    Article  PubMed  CAS  Google Scholar 

  • Kappler C, Meister M, Lagueux M, Gateff E, Hoffmann JA, Reichhart JM (1993) Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 12:1561–1568

    PubMed  CAS  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  • Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW (2003) STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578

    Article  PubMed  CAS  Google Scholar 

  • Khush RS, Cornwell WD, Uram JN, Lemaitre B (2002) A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr Biol 12:1728–1737

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Byun M, Oh BH (2003) Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat Immunol 4:787–793

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Yoon J, Cho H, Lee WB, Kim J, Song YH, Kim SN, Yoon JH, Kim-Ha J, Kim YJ (2005) Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-kappaB signaling modules. Nat Immunol 6:211–218

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-S, Han S-J, Ryu J-H, Choi K-H, Hong Y-S, Chung Y-H, Perrot S, Raibaud A, Brey PT, Lee WJ (2000) Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J Biol Chem 275:2071–2079

    Article  PubMed  CAS  Google Scholar 

  • Kleino A, Valanne S, Ulvila J, Kallio J, Myllymaki H, Enwald H, Stoven S, Poidevin M, Ueda R, Hultmark D, et al (2005) Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J 24:3423–3434

    Article  PubMed  CAS  Google Scholar 

  • Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host–bacterial mutualism. Science 306:1186–1188

    Article  PubMed  CAS  Google Scholar 

  • Kylsten P, Samakovlis C, Hultmark D (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9:217–224

    PubMed  CAS  Google Scholar 

  • Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 97:11427–11432

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B (2004) The road to Toll. Nat Rev Immunol 4:521–527

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94:14614–14619

    Article  PubMed  CAS  Google Scholar 

  • Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep 1:353–358

    Article  PubMed  CAS  Google Scholar 

  • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484

    Article  PubMed  CAS  Google Scholar 

  • Leulier F, Lhocine N, Lemaitre B, Meier P (2006) The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 26:7821–7831

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285:1917–1919

    Article  PubMed  CAS  Google Scholar 

  • Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56

    Article  PubMed  CAS  Google Scholar 

  • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114 –116

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Kim MS, Kim HE, Yano T, Oshima Y, Aggarwal K, Goldman WE, Silverman N, Kurata S, Oh BH (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J Biol Chem 281:8286–8295

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Gelius E, Liu G, Steiner H, Dziarski R (2000) Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 275:24490–24499

    Article  PubMed  CAS  Google Scholar 

  • Liu ZP, Galindo RL, Wasserman SA (1997) A role for CKII phosphorylation of the cactus PEST domain in dorsoventral patterning of the Drosophila embryo. Genes Dev 11:3413–3422

    Article  PubMed  CAS  Google Scholar 

  • Lo D, Tynan W, Dickerson J, Mendy J, Chang HW, Scharf M, Byrne D, Brayden D, Higgins L, Evans C, O’Mahony DJ (2003) Peptidoglycan recognition protein expression in mouse Peyer’s Patch follicle associated epithelium suggests functional specialization. Cell Immunol 224:8–16

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Wang M, Qi J, Wang H, Li X, Gupta D, Dziarski R (2006) Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem 281:5895–5907

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Wu LP, Anderson KV (2001) The antibacterial arm of the Drosophila innate immune response requires an IkappaB kinase. Genes Dev 15:104–110

    Article  PubMed  CAS  Google Scholar 

  • Manfruelli P, Reichhart JM, Steward R, Hoffmann JA, Lemaitre B (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J 18:3380–3391

    Article  PubMed  CAS  Google Scholar 

  • Mathur P, Murray B, Crowell T, Gardner H, Allaire N, Hsu YM, Thill G, Carulli JP (2004) Murine peptidoglycan recognition proteins PglyrpIalpha and PglyrpIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics 83:1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Mellroth P, Steiner H (2006) PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem Biophys Res Commun 350:994–999

    Article  PubMed  CAS  Google Scholar 

  • Mellroth P, Karlsson J, Steiner H (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 278:7059–7064

    Article  PubMed  CAS  Google Scholar 

  • Melly MA, McGee ZA, Rosenthal RS (1984) Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149:378–386

    PubMed  CAS  Google Scholar 

  • Meng X, Khanuja BS, Ip YT (1999) Toll receptor-mediated Drosophila immune response requires Dif, an NF-kB factor. Genes Dev 13:792–797

    Article  PubMed  CAS  Google Scholar 

  • Mengin-Lecreulx D, Lemaitre B (2005) Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. J Endotoxin Res 11:105–111

    PubMed  CAS  Google Scholar 

  • Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507

    Article  PubMed  CAS  Google Scholar 

  • Michaut L, Fehlbaum P, Moniatte M, Van Dorsselaer A, Reichhart JM, Bulet P (1996) Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett 395:6–10

    Article  PubMed  CAS  Google Scholar 

  • Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436:871–875

    Article  PubMed  CAS  Google Scholar 

  • Nicolas E, Reichhart JM, Hoffmann JA, Lemaitre B (1998) In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila. J Biol Chem 273:10463–10469

    Article  PubMed  CAS  Google Scholar 

  • Ochiai M, Ashida M (1999) A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J Biol Chem 274:11854–11858

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Kim JM, Kim LK, Kim SN, Kim-Ha J, Kim JH, Kim YJ (2003) Signal-induced transcriptional activation by Dif requires the dTRAP80 mediator module. Mol Cell Biol 23:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ, Kato T Jr, Richards N, Chan K, Mercurio F, et al (2004) Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18:584–594

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Kim CH, Kim JH, Je BR, Roh KB, Kim SJ, Lee HH, Ryu JH, Lim JH, Oh BH, et al (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci USA 104:6602–6607

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527

    Article  PubMed  CAS  Google Scholar 

  • Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3:e26

    Article  PubMed  CAS  Google Scholar 

  • Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279:12848–12853

    Article  PubMed  CAS  Google Scholar 

  • Qiu P, Pan PC, Govind S (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125:1909–1920

    PubMed  CAS  Google Scholar 

  • Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644–648

    Article  PubMed  CAS  Google Scholar 

  • Reach M, Galindo RL, Towb P, Allen JL, Karin M, Wasserman SA (1996) A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol 180:353–364

    Article  PubMed  CAS  Google Scholar 

  • Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11:1469–1477

    PubMed  CAS  Google Scholar 

  • Reichhart JM, Georgel P, Meister M, Lemaitre B, Kappler C, Hoffmann JA (1993) Expression and nuclear translocation of the rel/NF-kappa B-related morphogen dorsal during the immune response of Drosophila. C R Acad Sci III 316:1218–1224

    PubMed  CAS  Google Scholar 

  • Rosenthal RS (1979) Release of soluble peptidoglycan from growing gonococci: hexaminidase and amidase activities. Infect Immun 24:869–878

    PubMed  CAS  Google Scholar 

  • Roth S, Stein D, Nusslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann S, Jung AC, Zhou R, Silverman N, Hoffmann JA, Ferrandon D (2000) Role of Drosophila IKK gamma in a toll-independent antibacterial immune response. Nat Immunol 1:342–347

    Article  PubMed  CAS  Google Scholar 

  • Samakovlis C, Kimbrell DA, Kylsten P, Engstrom A, Hultmark D (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. Embo J 9:2969–2976

    PubMed  CAS  Google Scholar 

  • Samakovlis C, Åsling B, Boman HG, Gateff E, Hultmark D (1992) In vitro induction of cecropin genes–an immune response in a Drosophila blood cell line. Biochem Biophys Res Commun 188:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Santamaria P, Nusslein-Volhard C (1983) Partial rescue of dorsal, a maternal effect mutation affecting the dorso-ventral pattern of the Drosophila embryo, by the injection of wild-type cytoplasm. EMBO J 2:1695–1699

    PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Schmitz ML, Santos Silva MA dos, Baeuerle PA (1995) Transactivation domain 2 (TA2) of p65 NF-kappa B. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J Biol Chem 270:15576–15584

    Article  PubMed  CAS  Google Scholar 

  • Senger K, Armstrong GW, Rowell WJ, Kwan JM, Markstein M, Levine M (2004) Immunity regulatory DNAs share common organizational features in Drosophila. Mol Cell 13:19–32

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Liu H, Skolnik EY, Manley JL (2001) Physical and functional interactions between Drosophila TRAF2 and Pelle kinase contribute to Dorsal activation. Proc Natl Acad Sci USA 98:8596–8601

    Article  PubMed  CAS  Google Scholar 

  • Silverman N, Zhou R, Stöven S, Pandey N, Hultmark D, Maniatis T (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev 14:2461–2471

    Article  PubMed  CAS  Google Scholar 

  • Silverman N, Maniatis T (2001) NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 15:2321–2342

    Article  PubMed  CAS  Google Scholar 

  • Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, Schneider D, Maniatis T (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278:48928–48934

    Article  PubMed  CAS  Google Scholar 

  • Sluss HK, Han Z, Barrett T, Davis RJ, Ip YT (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev 10:2745–2758

    Article  PubMed  CAS  Google Scholar 

  • Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of IkBa by the F-box protein Slimb/bTrCP. Genes Dev 13:284–294

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  PubMed  CAS  Google Scholar 

  • Steinhaus EA (1940) The microbiology of insects: with special reference to the biologic relationships between bacteria and insects. Bacteriol Rev 4:17–57

    PubMed  CAS  Google Scholar 

  • Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Herve M, Chaput C, Boneca IG, Lee WJ, Lemaitre B, Mengin-Lecreulx D (2004) Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 173:7339–7348

    PubMed  CAS  Google Scholar 

  • Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238:692–694

    Article  PubMed  CAS  Google Scholar 

  • Steward R, McNally FJ, Schedl P (1984) Isolation of the dorsal locus of Drosophila. Nature 311:262–265

    Article  PubMed  CAS  Google Scholar 

  • Stöven S, Ando I, Kadalayil L, Engström Y, Hultmark D (2000) Activation of the Drosophila NF-kB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1:347–352

    Article  PubMed  Google Scholar 

  • Stöven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci USA 100:5991–5996

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Bristow BN, Qu G, Wasserman SA (2002a) A heterotrimeric death domain complex in Toll signaling. Proc Natl Acad Sci USA 99:12871–12876

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23:100–110

    Article  PubMed  CAS  Google Scholar 

  • Sun SC, Asling B, Faye I (1991) Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J Biol Chem 266:6644–6649

    PubMed  CAS  Google Scholar 

  • Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002b) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277:9505–9511

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan CP, Brown PH, Roychowdhury A, Wang Q, Guan R, Silverman N, Goldman WE, Boons GJ, Mariuzza RA (2006) Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc Natl Acad Sci USA 103:684–689

    Article  PubMed  CAS  Google Scholar 

  • Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T, Kurata S (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99:13705–13710

    Article  PubMed  CAS  Google Scholar 

  • Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S (2004) Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J 23:4690–4700

    Article  PubMed  CAS  Google Scholar 

  • Tanji T, Hu X, Weber AN, Ip YT (2007) Toll and IMD pathways synergistically activate innate immune response in Drosophila. Mol Cell Biol 27:4578–4588

    Article  PubMed  CAS  Google Scholar 

  • Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3:91–97

    Article  PubMed  CAS  Google Scholar 

  • Towb P, Galindo RL, Wasserman SA (1998) Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125:2443–2450

    PubMed  CAS  Google Scholar 

  • Tydell CC, Yount N, Tran D, Yuan J, Selsted ME (2002) Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J Biol Chem 277:19658–19664

    Article  PubMed  CAS  Google Scholar 

  • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748

    Article  PubMed  CAS  Google Scholar 

  • Tzou P, Reichhart JM, Lemaitre B (2002) Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci USA 99:2152–2157

    Article  PubMed  CAS  Google Scholar 

  • Uehara A, Fujimoto Y, Kawasaki A, Kusumoto S, Fukase K, Takada H (2006) Meso-diaminopimelic acid and meso-lanthionine, amino acids specific to bacterial peptidoglycans, activate human epithelial cells through NOD1. J Immunol 177:1796–1804

    PubMed  CAS  Google Scholar 

  • Valanne S, Kleino A, Myllymaki H, Vuoristo J, Ramet M (2007) Iap2 is required for a sustained response in the Drosophila Imd pathway. Dev Comp Immunol (in press)

    Google Scholar 

  • Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre B (2001) Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes Dev 15:1900–1912

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Weber AN, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J 25:5005–5014

    Article  PubMed  CAS  Google Scholar 

  • Wang ZM, Li X, Cocklin RR, Wang M, Fukase K, Inamura S, Kusumoto S, Gupta D, Dziarski R (2003) Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 278:49044–49052

    Article  PubMed  CAS  Google Scholar 

  • Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  PubMed  CAS  Google Scholar 

  • Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97:13772–13777

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Borge-Renberg K, Mellroth P, Steiner H, Hultmark D (2003) Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J Biol Chem 278:26319–26322

    Article  PubMed  CAS  Google Scholar 

  • Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265:22493–22498

    PubMed  CAS  Google Scholar 

  • Wirth T, Baltimore D (1988) Nuclear factor NF-kappa B can interact functionally with its cognate binding site to provide lymphoid-specific promoter function. EMBO J 7:3109–3113

    PubMed  CAS  Google Scholar 

  • Wu LP, Anderson KV (1998) Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392:93–97

    Article  PubMed  CAS  Google Scholar 

  • Yagi Y, Ip YT (2005) Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in Drosophila. EMBO Rep 6:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Yan R, Small S, Desplan C, Dearolf CR, Darnell JE Jr (1996) Identification of a Stat gene that functions in Drosophila development. Cell 84:421–430

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kinoshita K, Ashida M (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271:13854–13860

    Article  PubMed  CAS  Google Scholar 

  • Zaidman-Remy A, Herve M, Poidevin M, Pili-Floury S, Kim MS, Blanot D, Oh BH, Ueda R, Mengin-Lecreulx D, Lemaitre B (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463–473

    Article  PubMed  CAS  Google Scholar 

  • Zeidler MP, Bach EA, Perrimon N (2000) The roles of the Drosophila JAK/STAT pathway. Oncogene 19:2598–2606

    Article  PubMed  CAS  Google Scholar 

  • Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, Hultmark D (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci USA 101:14192–14197

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Fits L van der, Voerman JS, Melief MJ, Laman JD, Wang M, Wang H, Wang M, Li X, Walls CD, et al (2005) Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2. Biochim Biophys Acta 1752:34–46

    PubMed  CAS  Google Scholar 

  • Zhou R, Silverman N, Hong M, Liao DS, Chung Y, Chen ZJ, Maniatis T (2005) The role of ubiquitnation in Drosophila innate immunity. J Biol Chem 280:34048–34055

    Article  PubMed  CAS  Google Scholar 

  • Zhuang ZH, Sun L, Kong L, Hu JH, Yu MC, Reinach P, Zang JW, Ge BX (2006) Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB. Cell Signal 18:964–970

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ertürk-Hasdemir, D., Paquette, N., Aggarwal, K., Silverman, N. (2008). Bug Versus Bug: Humoral Immune Responses in Drosophila melanogaster . In: Heine, H. (eds) Innate Immunity of Plants, Animals, and Humans. Nucleic Acids and Molecular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73930-2_3

Download citation

Publish with us

Policies and ethics