Bug Versus Bug: Humoral Immune Responses in Drosophila melanogaster

  • Deniz Ertürk-Hasdemir
  • Nicholas Paquette
  • Kamna Aggarwal
  • Neal Silverman
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 21)

Insects mount a robust innate immune response against a wide array of microbial pathogens. For example, the fruit fly Drosphila melanogaster uses both cellular and humoral innate immune responses to combat pathogens. The hallmark of the Drosophila humoral immune response is the rapid induction of antimicrobial peptide genes in the fat body, the homolog of the mammalian liver. Expression of these antimicrobial peptide genes is rapidly induced by two immune signaling pathways, which respond to distinct microorganisms. The Toll pathway is activated by fungal and Gram-positive bacterial infections, whereas the IMD pathway responds to Gram-negative bacteria. In this chapter, we discuss recent advances in understanding the mechanisms involved in microbial recogni-tion, signal transduction, and immune protection mediated by these pathways, highlighting similarities and differences between Drosophila immune responses and mammalian innate immunity.


Humoral Immune Response Toll Pathway Peptidoglycan Recognition Protein Antimicrobial Peptide Gene PGRP Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5:441– 450PubMedCrossRefGoogle Scholar
  2. Akimaru H, Hou DX, Ishii S (1997) Drosophila CBP is required for dorsal-dependent twist gene expression. Nat Genet 17:211–214PubMedCrossRefGoogle Scholar
  3. Asling B, Dushay MS, Hultmark D (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25:511–518PubMedCrossRefGoogle Scholar
  4. Avila A, Silverman N, Diaz-Meco MT, Moscat J (2002) The Drosophila atypical protein kinase C-ref(2) p complex constitutes a conserved module for signaling in the toll pathway. Mol Cell Biol 22:8787–8795PubMedCrossRefGoogle Scholar
  5. Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19:1861–1870PubMedCrossRefGoogle Scholar
  6. Belvin MP, Jin Y, Anderson KV (1995) Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev 9:783–793PubMedCrossRefGoogle Scholar
  7. Bergmann A, Stein D, Geisler R, Hagenmaier S, Schmid B, Fernandez N, Schnell B, Nusslein-Volhard C (1996) A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech Dev 60:109–123PubMedCrossRefGoogle Scholar
  8. Binari R, Perrimon N (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev 8:300–312PubMedCrossRefGoogle Scholar
  9. Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J (2004) Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 5:1175–1180PubMedCrossRefGoogle Scholar
  10. Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2:e14PubMedCrossRefGoogle Scholar
  11. Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237:232–235PubMedCrossRefGoogle Scholar
  12. Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3:711–722PubMedCrossRefGoogle Scholar
  13. Brennan CA, Anderson KV (2004) Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol 22:457–483PubMedCrossRefGoogle Scholar
  14. Brey PT (1998) The contributions of the Pasteur school of insect immunity in molecular mechanisms of immune responses in insects. Chapman & Hall, LondonGoogle Scholar
  15. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851PubMedCrossRefGoogle Scholar
  16. Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B (2006) The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11:397–407PubMedCrossRefGoogle Scholar
  17. Cha GH, Cho KS, Lee JH, Kim M, Kim E, Park J, Lee SB, Chung J (2003) Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-kappaB-dependent signaling pathways. Mol Cell Biol 23:7982–7991PubMedCrossRefGoogle Scholar
  18. Chang CI, Ihara K, Chelliah Y, Mengin-Lecreulx D, Wakatsuki S, Deisenhofer J (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci USA 102:10279–10284PubMedCrossRefGoogle Scholar
  19. Chang CI, Chelliah Y, Borek D, Mengin-Lecreulx D, Deisenhofer J (2006) Structure of trachael cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311:1761–1764PubMedCrossRefGoogle Scholar
  20. Chaves-Carballo E (2005) Carlos Finlay and yellow fever: triumph over adversity. Mil Med 170:881–885PubMedGoogle Scholar
  21. Chen FE, Huang DB, Chen YQ, Ghosh G (1998a) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391:410–413PubMedCrossRefGoogle Scholar
  22. Chen W, White MA, Cobb MH (2002) Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem 277:49105–49110PubMedCrossRefGoogle Scholar
  23. Chen YQ, Ghosh S, Ghosh G (1998b) A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nat Struct Biol 5:67–73PubMedCrossRefGoogle Scholar
  24. Cherry S, Silverman N (2006) Host–pathogen interactions in Drosophila: new tricks from an old friend. Nat Immunol 7:911–917PubMedCrossRefGoogle Scholar
  25. Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y, Stahl GL, Ezekowitz RAB (2005) Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106:2551–2558PubMedCrossRefGoogle Scholar
  26. Choe KM, Werner T, Stöven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296:359–362PubMedCrossRefGoogle Scholar
  27. Choe KM, Lee H, Anderson KV (2005) Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci USA 102:1122–1126PubMedCrossRefGoogle Scholar
  28. Cookson BT, Cho HL, Herwaldt LA, Goldman WE (1989) Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect Immun 57:2223–2229PubMedGoogle Scholar
  29. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98:12590–12595PubMedCrossRefGoogle Scholar
  30. De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata S, Lee BL, Iwanaga S, Lemaitre B, Brey PT (2002a) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev Cell 3:581–592PubMedCrossRefGoogle Scholar
  31. De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002b) The Toll and IMD pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579PubMedCrossRefGoogle Scholar
  32. Delaney JR, Stoven S, Uvell H, Anderson KV, Engstrom Y, Mlodzik M (2006) Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 25:3068–3077PubMedCrossRefGoogle Scholar
  33. Dimarcq JL, Hoffmann D, Meister M, Bulet P, Lanot R, Reichhart JM, Hoffmann JA (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 221:201–209PubMedCrossRefGoogle Scholar
  34. Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4:e229PubMedCrossRefGoogle Scholar
  35. Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6:946–953PubMedCrossRefGoogle Scholar
  36. Drier EA, Steward R (1997) The dorsoventral signal transduction pathway and the Rel-like transcription factors in Drosophila. Semin Cancer Biol 8:83–92PubMedCrossRefGoogle Scholar
  37. Drier EA, Huang LH, Steward R (1999) Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev 13:556–568PubMedCrossRefGoogle Scholar
  38. Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, et al (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33:388–391PubMedCrossRefGoogle Scholar
  39. Dushay MS, Åsling B, Hultmark D (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93:10343–10347PubMedCrossRefGoogle Scholar
  40. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C (2006) Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25:6800–6816PubMedCrossRefGoogle Scholar
  41. Dziarski R, Platt KA, Gelius E, Steiner H, Gupta D (2003) Defect in neutrophil killing and increased susceptibility to infection with non-pathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102:689–697PubMedCrossRefGoogle Scholar
  42. Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972PubMedCrossRefGoogle Scholar
  43. Ekengren S, Hultmark D (2001) A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem Biophys Res Commun 284:998–1003PubMedCrossRefGoogle Scholar
  44. Engstrom Y, Kadalayil L, Sun SC, Samakovlis C, Hultmark D, Faye I (1993) kappa B-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 232:327–333PubMedCrossRefGoogle Scholar
  45. Fernandez NQ, Grosshans J, Goltz JS, Stein D (2001) Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128:2963–2974PubMedGoogle Scholar
  46. Ferrandon D, Jung AC, Criqui M, Lemaitre B, Uttenweiler-Joseph S, Michaut L, Reichhart J, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17:1217–1227PubMedCrossRefGoogle Scholar
  47. Filipe SR, Tomasz A, Ligoxygakis P (2005) Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 6:327–333PubMedCrossRefGoogle Scholar
  48. Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE, Philpott DJ (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26:445– 459PubMedCrossRefGoogle Scholar
  49. Geisler R, Bergmann A, Hiromi Y, Nusslein-Volhard C (1992) cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the I kappa B gene family of vertebrates. Cell 71:613–621PubMedCrossRefGoogle Scholar
  50. Gelius E, Persson C, Karlsson J, Steiner H (2003) A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem Biophys Res Commun 306:988–994PubMedCrossRefGoogle Scholar
  51. Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1:503–514PubMedCrossRefGoogle Scholar
  52. Gesellchen V, Kuttenkeuler D, Steckel M, Pelte N, Boutros M (2005) An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep 6:979–984PubMedCrossRefGoogle Scholar
  53. Gillespie SK, Wasserman SA (1994) Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol 14:3559–3568PubMedGoogle Scholar
  54. Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302:2126–2130PubMedCrossRefGoogle Scholar
  55. Goldman WE, Klapper DG, Baseman JB (1982) Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun 36:782–794PubMedGoogle Scholar
  56. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640–644PubMedCrossRefGoogle Scholar
  57. Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437PubMedCrossRefGoogle Scholar
  58. Gross I, Georgel P, Kappler C, Reichhart JM, Hoffmann JA (1996) Drosophila immunity: a comparative analysis of the Rel proteins dorsal and Dif in the induction of the genes encoding diptericin and cecropin. Nucleic Acids Res 24:1238–1245PubMedCrossRefGoogle Scholar
  59. Guan R, Mariuzza RA (2007) Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol 15:127–134PubMedCrossRefGoogle Scholar
  60. Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780PubMedCrossRefGoogle Scholar
  61. Hedengren M, Åsling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837PubMedCrossRefGoogle Scholar
  62. Heimpel AM, Harshbarger JC (1965) Symposium on microbial insecticides. V. Immunity in insects. Bacteriol Rev 29:397–405PubMedGoogle Scholar
  63. Holland PM, Suzanne M, Campbell JS, Noselli S, Cooper JA (1997) MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J Biol Chem 272:24994–24998PubMedCrossRefGoogle Scholar
  64. Hombria JC, Brown S (2002) The fertile field of Drosophila Jak/STAT signalling. Curr Biol 12:R569–R575PubMedCrossRefGoogle Scholar
  65. Hou XS, Melnick MB, Perrimon N (1996) Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84:411– 419PubMedCrossRefGoogle Scholar
  66. Hu X, Yagi Y, Tanji T, Zhou S, Ip YT (2004) Multimerization and interaction of Toll and Spatzle in Drosophila. Proc Natl Acad Sci USA 101:9369–9374PubMedCrossRefGoogle Scholar
  67. Huh JR, Foe I, Muro I, Chen CH, Seol JH, Yoo SJ, Guo M, Park JM, Hay BA (2007) The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J Biol Chem 282:2056–2068PubMedCrossRefGoogle Scholar
  68. Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19PubMedCrossRefGoogle Scholar
  69. Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576Google Scholar
  70. Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, Gonzalez-Crespo S, Tatei K, Levine M (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75:753–763PubMedCrossRefGoogle Scholar
  71. Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci USA 98:15119–15124PubMedCrossRefGoogle Scholar
  72. Isoda K, Nusslein-Volhard C (1994) Disulfide cross-linking in crude embryonic lysates reveals three complexes of the Drosophila morphogen dorsal and its inhibitor cactus. Proc Natl Acad Sci USA 91:5350 –5354PubMedCrossRefGoogle Scholar
  73. Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, et al (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10:45–55PubMedCrossRefGoogle Scholar
  74. Kambris Z, Brun S, Jang IH, Nam HJ, Romeo Y, Takahashi K, Lee WJ, Ueda R, Lemaitre B (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr Biol 16:808–813PubMedCrossRefGoogle Scholar
  75. Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637–649PubMedCrossRefGoogle Scholar
  76. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, et al (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723PubMedCrossRefGoogle Scholar
  77. Kang D, Liu G, Lundstrom A, Gelius E, Steiner H (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 95:10078–10082PubMedCrossRefGoogle Scholar
  78. Kappler C, Meister M, Lagueux M, Gateff E, Hoffmann JA, Reichhart JM (1993) Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 12:1561–1568PubMedGoogle Scholar
  79. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar
  80. Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW (2003) STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578PubMedCrossRefGoogle Scholar
  81. Khush RS, Cornwell WD, Uram JN, Lemaitre B (2002) A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr Biol 12:1728–1737PubMedCrossRefGoogle Scholar
  82. Kim MS, Byun M, Oh BH (2003) Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat Immunol 4:787–793PubMedCrossRefGoogle Scholar
  83. Kim T, Yoon J, Cho H, Lee WB, Kim J, Song YH, Kim SN, Yoon JH, Kim-Ha J, Kim YJ (2005) Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-kappaB signaling modules. Nat Immunol 6:211–218PubMedCrossRefGoogle Scholar
  84. Kim Y-S, Han S-J, Ryu J-H, Choi K-H, Hong Y-S, Chung Y-H, Perrot S, Raibaud A, Brey PT, Lee WJ (2000) Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J Biol Chem 275:2071–2079PubMedCrossRefGoogle Scholar
  85. Kleino A, Valanne S, Ulvila J, Kallio J, Myllymaki H, Enwald H, Stoven S, Poidevin M, Ueda R, Hultmark D, et al (2005) Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J 24:3423–3434PubMedCrossRefGoogle Scholar
  86. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host–bacterial mutualism. Science 306:1186–1188PubMedCrossRefGoogle Scholar
  87. Kylsten P, Samakovlis C, Hultmark D (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9:217–224PubMedGoogle Scholar
  88. Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 97:11427–11432PubMedCrossRefGoogle Scholar
  89. Lemaitre B (2004) The road to Toll. Nat Rev Immunol 4:521–527PubMedCrossRefGoogle Scholar
  90. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedCrossRefGoogle Scholar
  91. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983PubMedCrossRefGoogle Scholar
  92. Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94:14614–14619PubMedCrossRefGoogle Scholar
  93. Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep 1:353–358PubMedCrossRefGoogle Scholar
  94. Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484PubMedCrossRefGoogle Scholar
  95. Leulier F, Lhocine N, Lemaitre B, Meier P (2006) The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 26:7821–7831PubMedCrossRefGoogle Scholar
  96. Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700PubMedCrossRefGoogle Scholar
  97. Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285:1917–1919PubMedCrossRefGoogle Scholar
  98. Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56PubMedCrossRefGoogle Scholar
  99. Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114 –116PubMedCrossRefGoogle Scholar
  100. Lim JH, Kim MS, Kim HE, Yano T, Oshima Y, Aggarwal K, Goldman WE, Silverman N, Kurata S, Oh BH (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J Biol Chem 281:8286–8295PubMedCrossRefGoogle Scholar
  101. Liu C, Gelius E, Liu G, Steiner H, Dziarski R (2000) Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 275:24490–24499PubMedCrossRefGoogle Scholar
  102. Liu ZP, Galindo RL, Wasserman SA (1997) A role for CKII phosphorylation of the cactus PEST domain in dorsoventral patterning of the Drosophila embryo. Genes Dev 11:3413–3422PubMedCrossRefGoogle Scholar
  103. Lo D, Tynan W, Dickerson J, Mendy J, Chang HW, Scharf M, Byrne D, Brayden D, Higgins L, Evans C, O’Mahony DJ (2003) Peptidoglycan recognition protein expression in mouse Peyer’s Patch follicle associated epithelium suggests functional specialization. Cell Immunol 224:8–16PubMedCrossRefGoogle Scholar
  104. Lu X, Wang M, Qi J, Wang H, Li X, Gupta D, Dziarski R (2006) Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem 281:5895–5907PubMedCrossRefGoogle Scholar
  105. Lu Y, Wu LP, Anderson KV (2001) The antibacterial arm of the Drosophila innate immune response requires an IkappaB kinase. Genes Dev 15:104–110PubMedCrossRefGoogle Scholar
  106. Manfruelli P, Reichhart JM, Steward R, Hoffmann JA, Lemaitre B (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J 18:3380–3391PubMedCrossRefGoogle Scholar
  107. Mathur P, Murray B, Crowell T, Gardner H, Allaire N, Hsu YM, Thill G, Carulli JP (2004) Murine peptidoglycan recognition proteins PglyrpIalpha and PglyrpIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics 83:1151–1163PubMedCrossRefGoogle Scholar
  108. Mellroth P, Steiner H (2006) PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem Biophys Res Commun 350:994–999PubMedCrossRefGoogle Scholar
  109. Mellroth P, Karlsson J, Steiner H (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 278:7059–7064PubMedCrossRefGoogle Scholar
  110. Melly MA, McGee ZA, Rosenthal RS (1984) Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149:378–386PubMedGoogle Scholar
  111. Meng X, Khanuja BS, Ip YT (1999) Toll receptor-mediated Drosophila immune response requires Dif, an NF-kB factor. Genes Dev 13:792–797PubMedCrossRefGoogle Scholar
  112. Mengin-Lecreulx D, Lemaitre B (2005) Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. J Endotoxin Res 11:105–111PubMedGoogle Scholar
  113. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507PubMedCrossRefGoogle Scholar
  114. Michaut L, Fehlbaum P, Moniatte M, Van Dorsselaer A, Reichhart JM, Bulet P (1996) Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett 395:6–10PubMedCrossRefGoogle Scholar
  115. Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759PubMedCrossRefGoogle Scholar
  116. Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436:871–875PubMedCrossRefGoogle Scholar
  117. Nicolas E, Reichhart JM, Hoffmann JA, Lemaitre B (1998) In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila. J Biol Chem 273:10463–10469PubMedCrossRefGoogle Scholar
  118. Ochiai M, Ashida M (1999) A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J Biol Chem 274:11854–11858PubMedCrossRefGoogle Scholar
  119. Park JM, Kim JM, Kim LK, Kim SN, Kim-Ha J, Kim JH, Kim YJ (2003) Signal-induced transcriptional activation by Dif requires the dTRAP80 mediator module. Mol Cell Biol 23:1358–1367PubMedCrossRefGoogle Scholar
  120. Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ, Kato T Jr, Richards N, Chan K, Mercurio F, et al (2004) Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 18:584–594PubMedCrossRefGoogle Scholar
  121. Park JW, Kim CH, Kim JH, Je BR, Roh KB, Kim SJ, Lee HH, Ryu JH, Lim JH, Oh BH, et al (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci USA 104:6602–6607PubMedCrossRefGoogle Scholar
  122. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRefGoogle Scholar
  123. Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527PubMedCrossRefGoogle Scholar
  124. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3:e26PubMedCrossRefGoogle Scholar
  125. Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279:12848–12853PubMedCrossRefGoogle Scholar
  126. Qiu P, Pan PC, Govind S (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125:1909–1920PubMedGoogle Scholar
  127. Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644–648PubMedCrossRefGoogle Scholar
  128. Reach M, Galindo RL, Towb P, Allen JL, Karin M, Wasserman SA (1996) A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol 180:353–364PubMedCrossRefGoogle Scholar
  129. Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11:1469–1477PubMedGoogle Scholar
  130. Reichhart JM, Georgel P, Meister M, Lemaitre B, Kappler C, Hoffmann JA (1993) Expression and nuclear translocation of the rel/NF-kappa B-related morphogen dorsal during the immune response of Drosophila. C R Acad Sci III 316:1218–1224PubMedGoogle Scholar
  131. Rosenthal RS (1979) Release of soluble peptidoglycan from growing gonococci: hexaminidase and amidase activities. Infect Immun 24:869–878PubMedGoogle Scholar
  132. Roth S, Stein D, Nusslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202PubMedCrossRefGoogle Scholar
  133. Rutschmann S, Jung AC, Zhou R, Silverman N, Hoffmann JA, Ferrandon D (2000) Role of Drosophila IKK gamma in a toll-independent antibacterial immune response. Nat Immunol 1:342–347PubMedCrossRefGoogle Scholar
  134. Samakovlis C, Kimbrell DA, Kylsten P, Engstrom A, Hultmark D (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. Embo J 9:2969–2976PubMedGoogle Scholar
  135. Samakovlis C, Åsling B, Boman HG, Gateff E, Hultmark D (1992) In vitro induction of cecropin genes–an immune response in a Drosophila blood cell line. Biochem Biophys Res Commun 188:1169–1175PubMedCrossRefGoogle Scholar
  136. Santamaria P, Nusslein-Volhard C (1983) Partial rescue of dorsal, a maternal effect mutation affecting the dorso-ventral pattern of the Drosophila embryo, by the injection of wild-type cytoplasm. EMBO J 2:1695–1699PubMedGoogle Scholar
  137. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  138. Schmitz ML, Santos Silva MA dos, Baeuerle PA (1995) Transactivation domain 2 (TA2) of p65 NF-kappa B. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J Biol Chem 270:15576–15584PubMedCrossRefGoogle Scholar
  139. Senger K, Armstrong GW, Rowell WJ, Kwan JM, Markstein M, Levine M (2004) Immunity regulatory DNAs share common organizational features in Drosophila. Mol Cell 13:19–32PubMedCrossRefGoogle Scholar
  140. Shen B, Liu H, Skolnik EY, Manley JL (2001) Physical and functional interactions between Drosophila TRAF2 and Pelle kinase contribute to Dorsal activation. Proc Natl Acad Sci USA 98:8596–8601PubMedCrossRefGoogle Scholar
  141. Silverman N, Zhou R, Stöven S, Pandey N, Hultmark D, Maniatis T (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev 14:2461–2471PubMedCrossRefGoogle Scholar
  142. Silverman N, Maniatis T (2001) NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 15:2321–2342PubMedCrossRefGoogle Scholar
  143. Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, Schneider D, Maniatis T (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278:48928–48934PubMedCrossRefGoogle Scholar
  144. Sluss HK, Han Z, Barrett T, Davis RJ, Ip YT (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev 10:2745–2758PubMedCrossRefGoogle Scholar
  145. Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of IkBa by the F-box protein Slimb/bTrCP. Genes Dev 13:284–294PubMedCrossRefGoogle Scholar
  146. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248PubMedCrossRefGoogle Scholar
  147. Steinhaus EA (1940) The microbiology of insects: with special reference to the biologic relationships between bacteria and insects. Bacteriol Rev 4:17–57PubMedGoogle Scholar
  148. Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Herve M, Chaput C, Boneca IG, Lee WJ, Lemaitre B, Mengin-Lecreulx D (2004) Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 173:7339–7348PubMedGoogle Scholar
  149. Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238:692–694PubMedCrossRefGoogle Scholar
  150. Steward R, McNally FJ, Schedl P (1984) Isolation of the dorsal locus of Drosophila. Nature 311:262–265PubMedCrossRefGoogle Scholar
  151. Stöven S, Ando I, Kadalayil L, Engström Y, Hultmark D (2000) Activation of the Drosophila NF-kB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1:347–352PubMedCrossRefGoogle Scholar
  152. Stöven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci USA 100:5991–5996PubMedCrossRefGoogle Scholar
  153. Sun H, Bristow BN, Qu G, Wasserman SA (2002a) A heterotrimeric death domain complex in Toll signaling. Proc Natl Acad Sci USA 99:12871–12876PubMedCrossRefGoogle Scholar
  154. Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23:100–110PubMedCrossRefGoogle Scholar
  155. Sun SC, Asling B, Faye I (1991) Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J Biol Chem 266:6644–6649PubMedGoogle Scholar
  156. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002b) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277:9505–9511PubMedCrossRefGoogle Scholar
  157. Swaminathan CP, Brown PH, Roychowdhury A, Wang Q, Guan R, Silverman N, Goldman WE, Boons GJ, Mariuzza RA (2006) Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc Natl Acad Sci USA 103:684–689PubMedCrossRefGoogle Scholar
  158. Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T, Kurata S (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99:13705–13710PubMedCrossRefGoogle Scholar
  159. Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S (2004) Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J 23:4690–4700PubMedCrossRefGoogle Scholar
  160. Tanji T, Hu X, Weber AN, Ip YT (2007) Toll and IMD pathways synergistically activate innate immune response in Drosophila. Mol Cell Biol 27:4578–4588PubMedCrossRefGoogle Scholar
  161. Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3:91–97PubMedCrossRefGoogle Scholar
  162. Towb P, Galindo RL, Wasserman SA (1998) Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125:2443–2450PubMedGoogle Scholar
  163. Tydell CC, Yount N, Tran D, Yuan J, Selsted ME (2002) Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J Biol Chem 277:19658–19664PubMedCrossRefGoogle Scholar
  164. Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748PubMedCrossRefGoogle Scholar
  165. Tzou P, Reichhart JM, Lemaitre B (2002) Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci USA 99:2152–2157PubMedCrossRefGoogle Scholar
  166. Uehara A, Fujimoto Y, Kawasaki A, Kusumoto S, Fukase K, Takada H (2006) Meso-diaminopimelic acid and meso-lanthionine, amino acids specific to bacterial peptidoglycans, activate human epithelial cells through NOD1. J Immunol 177:1796–1804PubMedGoogle Scholar
  167. Valanne S, Kleino A, Myllymaki H, Vuoristo J, Ramet M (2007) Iap2 is required for a sustained response in the Drosophila Imd pathway. Dev Comp Immunol (in press)Google Scholar
  168. Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre B (2001) Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes Dev 15:1900–1912PubMedCrossRefGoogle Scholar
  169. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351PubMedCrossRefGoogle Scholar
  170. Wang L, Weber AN, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J 25:5005–5014PubMedCrossRefGoogle Scholar
  171. Wang ZM, Li X, Cocklin RR, Wang M, Fukase K, Inamura S, Kusumoto S, Gupta D, Dziarski R (2003) Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 278:49044–49052PubMedCrossRefGoogle Scholar
  172. Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878PubMedCrossRefGoogle Scholar
  173. Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800PubMedCrossRefGoogle Scholar
  174. Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97:13772–13777PubMedCrossRefGoogle Scholar
  175. Werner T, Borge-Renberg K, Mellroth P, Steiner H, Hultmark D (2003) Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J Biol Chem 278:26319–26322PubMedCrossRefGoogle Scholar
  176. Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265:22493–22498PubMedGoogle Scholar
  177. Wirth T, Baltimore D (1988) Nuclear factor NF-kappa B can interact functionally with its cognate binding site to provide lymphoid-specific promoter function. EMBO J 7:3109–3113PubMedGoogle Scholar
  178. Wu LP, Anderson KV (1998) Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392:93–97PubMedCrossRefGoogle Scholar
  179. Yagi Y, Ip YT (2005) Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in Drosophila. EMBO Rep 6:1088–1094PubMedCrossRefGoogle Scholar
  180. Yan R, Small S, Desplan C, Dearolf CR, Darnell JE Jr (1996) Identification of a Stat gene that functions in Drosophila development. Cell 84:421–430PubMedCrossRefGoogle Scholar
  181. Yoshida H, Kinoshita K, Ashida M (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271:13854–13860PubMedCrossRefGoogle Scholar
  182. Zaidman-Remy A, Herve M, Poidevin M, Pili-Floury S, Kim MS, Blanot D, Oh BH, Ueda R, Mengin-Lecreulx D, Lemaitre B (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463–473PubMedCrossRefGoogle Scholar
  183. Zeidler MP, Bach EA, Perrimon N (2000) The roles of the Drosophila JAK/STAT pathway. Oncogene 19:2598–2606PubMedCrossRefGoogle Scholar
  184. Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, Hultmark D (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci USA 101:14192–14197PubMedCrossRefGoogle Scholar
  185. Zhang Y, Fits L van der, Voerman JS, Melief MJ, Laman JD, Wang M, Wang H, Wang M, Li X, Walls CD, et al (2005) Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2. Biochim Biophys Acta 1752:34–46PubMedGoogle Scholar
  186. Zhou R, Silverman N, Hong M, Liao DS, Chung Y, Chen ZJ, Maniatis T (2005) The role of ubiquitnation in Drosophila innate immunity. J Biol Chem 280:34048–34055PubMedCrossRefGoogle Scholar
  187. Zhuang ZH, Sun L, Kong L, Hu JH, Yu MC, Reinach P, Zang JW, Ge BX (2006) Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB. Cell Signal 18:964–970PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Deniz Ertürk-Hasdemir
    • 1
  • Nicholas Paquette
    • 1
  • Kamna Aggarwal
    • 1
  • Neal Silverman
    • 1
  1. 1.Division of Infectious Diseases, Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations