Advertisement

The Path Less Explored: Innate Immune Reactions in Cnidarians

  • Thomas C. G. Bosch
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 21)

The phylum Cnidaria is one of the earliest branches in the animal tree of life. Cnidarians possess most of the gene families found in bilaterians and have retained many ancestral genes that have been lost in Drosophila and Caenorhabditis elegans. Characterization of the innate immune repertoire of extant cnidarians is, therefore, of both fundamental and applied interest — it not only provides insights into the basic immunological “tool kit” of the common ancestor of all animals, but is also likely to be important in understanding human barrier disorders by describing ancient mechanisms of host/microbial interactions and the resulting evolutionary selection processes. The chapter summarizes four aspects of immunity which can be studied particularly well within cnidarians — and which may be of interest from a comparative point of view to all immunologists: intraspecies competition in sea anemones, allorecognition and cell lineage competition in the marine hydrozoan Hydractinia, antimicrobial defense reactions in Hydra and jellyfish, and symbiotic relationships in both corals and Hydra. Studies in cnidarians reveal that there is no problem in innate immunity these basal metazoans did not attempt to solve. Thus, whatever we experience with our own innate immune system, whatever we hope to learn, we will see that the cnidarians have been there before us.

Keywords

Antimicrobial Peptide Innate Immune Reaction Antimicrobial Defense Reaction Colonial Hydroid Mesenterial Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayre DJ, Grosberg RK (2005) Behind anemone lines: factors affecting division of labour in the social cnidarian Anthopleura elegantissima. Anim Behav 70:97–110CrossRefGoogle Scholar
  2. Barneah O, Benayahu Y Weis VM (2006) Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. Mar Biotechnol 8:11–16PubMedCrossRefGoogle Scholar
  3. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859PubMedCrossRefGoogle Scholar
  4. Bigger CH (1988) The role of nematocysts in anthozoan aggression. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 295–308Google Scholar
  5. Bigger CH, Hildemann WH (1982) Cellular defense systems of the coelenterate. In: Cohen A, Sigel S (eds) Phylogeny and ontogeny. (The reticuloendothelial system: a comprehensive treatise, vol 3) Plenum, New York, pp 59–87Google Scholar
  6. Bosch TCG (2007a) Symmetry breaking in stem cells of the basal metazoan Hydra. Prog Mol Subcell Biol 45:61–78PubMedCrossRefGoogle Scholar
  7. Bosch TCG (2007b) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 303:421–433PubMedCrossRefGoogle Scholar
  8. Bosch TCG, David CN (1987) Stem cells of Hydra magnipapillata can differentiate into somatic cells and germ line cells. Dev Biol 121:182–191CrossRefGoogle Scholar
  9. Bridge D, et al (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol 12:679–689PubMedGoogle Scholar
  10. Brogden KA, Guthmiller JM, Salzet M, Zasloff M (2005) The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 6:558–564PubMedGoogle Scholar
  11. Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79:5337–5341PubMedCrossRefGoogle Scholar
  12. Buss LW, Grosberg RK (1990) Morphogenetic basis for phenotypic differences in hydroid competitive behavior. Nature 343:63–66CrossRefGoogle Scholar
  13. Buss LW, Shenk MA (1990) Hydroid allorecognition regulates competition at both the level of the colony and at the level of the cell lineage. In: Marchalonis JJ, Reinisch C (eds) Defense molecules. Liss, New York, pp 85–105Google Scholar
  14. Buss LW, Yund PO (1988) A comparison of modern and historical populations of the colonial hydroid Hydractinia. Ecology 69:646–654CrossRefGoogle Scholar
  15. Cadavid LF (2004) Self-discrimination in colonial invertebrates: genetic control of allorecognition in the hydroid Hydractinia. Dev Comp Immunol 28:871–879PubMedCrossRefGoogle Scholar
  16. Cadavid LF (2005) Self/non-self discrimination in basal metazoa: genetics of allorecognition in the hydroid Hydractinia. Integr Comp Biol 45:623–630CrossRefGoogle Scholar
  17. Campbell RD, Bibb C (1970) Transplantation in coelenterates. Transplant Proc 2:202–211PubMedGoogle Scholar
  18. Chadwick-Furman N, Rinkevich B (1994) A complex allorecognition system in a reef-building coral: delayed responses, reversals and nontransitive hierarchies. Coral Reefs 13:57–63CrossRefGoogle Scholar
  19. Cherry S, Silverman N (2006) Host–pathogen interactions in Drosophila: new tricks from an old friend. Nat Immunol 7:911–917PubMedCrossRefGoogle Scholar
  20. Collins AG, et al (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol55:97–115CrossRefGoogle Scholar
  21. Du Pasquier L (1974) The genetic control of histocompatibility reactions: phylogenetic aspects. Arch Biol 85:91–103Google Scholar
  22. Du Pasquier L (2001) The immune system of invertebrates and vertebrates (review). Comp Biochem Physiol B Biochem Mol Biol 129:1–15PubMedCrossRefGoogle Scholar
  23. Dunn SR, Thomason JC, Le Tissier MD, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222PubMedCrossRefGoogle Scholar
  24. Durham F (1888) On the emigration of ameboid corpuscles in the starfish. Proc R Soc Lond B 43:328–330Google Scholar
  25. Frank U, Rinkevich B (1994) Nontransitive patterns of historecognition phenomena in the Red Sea hydrocoral Millepora dichotoma. Mar Biol 118:723–729CrossRefGoogle Scholar
  26. Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity (review). Nat Rev Immunol 2:346–353PubMedCrossRefGoogle Scholar
  27. Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens (review). Cell Microbiol 7:741–751PubMedCrossRefGoogle Scholar
  28. Grosberg RK, Hartt MW, Levitan DR (1997) Is allorecognition specificity in Hydractinia symbiolongicarpus controlled by a single gene? Genetics 145:857–860PubMedGoogle Scholar
  29. Habetha M, Bosch TCG (2005) Symbiotic Hydra express a plant-like peroxidase gene during oogenesis. J Exp Biol 208:2157–2165PubMedCrossRefGoogle Scholar
  30. Habetha M, Anton-Erxleben F, Neumann K, Bosch TCG (2003) The Hydra viridis/Chlorella symbiosis. Growth and sexual differentiation in polyps without symbionts. Zoology 106:101–108PubMedCrossRefGoogle Scholar
  31. Hartog JC den (1977) The marginal tentacles of Rhodactissanctithomae (Corallimorphia) and the sweeper tentacles of Monrastrea cavernosa (Scleractinia): their cnidom and possible function. Proc Int Coral Reef Symp 3:463–469Google Scholar
  32. Hauenschild VC (1954) Genetische und entwichlungphysiologische Untersuchungen ueber Intersexualitaet und Gewebevertraeglichkeit bei Hydractinia echinata Flem. Wilhelm Roux Arch Entwicklungsmech Org 147:1–41CrossRefGoogle Scholar
  33. Hauenschild VC (1956) Uber die Vererbung einer Gewebevertraeglichkeitseigenschaft bei dem Hydroidpolypen Hydractinia echinata. Z Naturforsch 1956:132–138Google Scholar
  34. Hemmrich G, Miller DJ, Bosch TCG (2007) The evolution of immunity – a low life perspective. Trends Immunol (in press)Google Scholar
  35. Hildemann WH, Jokiel PL, Bigger CH, Johnston IS (1980) Allogeneic polymorphism and alloimmune memory in the coral, Montipora verrucosa.Transplantation 30:297–301PubMedCrossRefGoogle Scholar
  36. Ivker FB (1972) A hierarchy of histo-compatibility in Hydractinia echinata. Biol Bull 143:162–174CrossRefGoogle Scholar
  37. Kasahara S, Bosch TCG (2003) Enhanced antibacterial activity in Hydra polyps lacking nerve cells. Dev Comp Immunol 27:79–166PubMedCrossRefGoogle Scholar
  38. Kass-Simon AA, Scappaticci AA (2002) The behavioral and developmental physiology of nematocysts. Can J Zool 80:1772–1794CrossRefGoogle Scholar
  39. Khalturin K, Bosch TCG (2006) Self/nonself discrimination at the basis of chordate evolution: limits on molecular conservation. Curr Opin Immunol 19:4–9PubMedCrossRefGoogle Scholar
  40. Khalturin K, Panzer Z, Cooper MD, Bosch TCG (2004) Recognition strategies in the innate immune system of ancestral chordates. Mol Immunol 41:1077–1087PubMedCrossRefGoogle Scholar
  41. Kim DH, Ausubel FM (2005) Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans (review). Curr Opin Immunol 17:4–10PubMedCrossRefGoogle Scholar
  42. Kusserow A, et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160PubMedCrossRefGoogle Scholar
  43. Lang J (1973) Interspecific aggression by scleractinian corals. 2. Whythe race is not only to the swift. Bull Mar Sci 23:260–279Google Scholar
  44. Lange R, Plickert G, Miller WA (1989) Histocompatibility in a low invertebrate, Hydractinia echinata: analysis of the mechanism of rejection. J Exp Zool 249:284–292CrossRefGoogle Scholar
  45. Leclerc M (1996) Humoral factors in marine invertebrate. In: Rinkevich B, Müller WEG (eds) Progress in molecular and subcellular biology: invertebrate immunology. Springer, Berlin Heidelberg New York, pp 1–9Google Scholar
  46. Lenhoff HM, Muscatine L (1963) Symbiosis: on the role of algae symbiotic with hydra Science 142:956–958Google Scholar
  47. Lubbock R (1980) Clone-specific cellular recognition in a sea anemone. Proc Natl Acad Sci USA 77:6667–6669PubMedCrossRefGoogle Scholar
  48. Medina M, et al (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712PubMedCrossRefGoogle Scholar
  49. Meinardi E, Florin-Christensen M, Paratcha G, Azcurra JM, Florin-Christensen J (1995) The molecular basis of the self/nonself selectivity of a coelenterate toxin. Biochem Biophys Res Commun. 216:348–354PubMedCrossRefGoogle Scholar
  50. Miller DJ, Ball EE, Technau U (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21:536–539PubMedCrossRefGoogle Scholar
  51. Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG (2007) The innate immune repertoire in cnidaria – ancestral complexity and stochastic gene loss. Genome Biol 8:R59PubMedCrossRefGoogle Scholar
  52. Mokady O, Buss LW (1996) Transmission genetics of allorecognition in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics 143:823–827PubMedGoogle Scholar
  53. Müller WEG, Müller I, Zahn RK, Maidhof A (1984) Intraspecific recognition system in scleractinian corals: morphological and cytochemical description of the autolysis mechanism. J Histochem Cytochem 32:285–288PubMedGoogle Scholar
  54. O’Brien TL (1982) Inhibition of vacuolar membrane fusion by intracellular symbiotic algae in Hydra viridis (Florida strain). J Exp Zool 223:211–218PubMedCrossRefGoogle Scholar
  55. Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men’shenin AV, Kokryakov VN (2006) Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun S348:514–523CrossRefGoogle Scholar
  56. Phillips JH (1963) Immune mechanisms in the phylum Coelenterata. In: Dougherty EC (ed) The lower metazoan: comparative biology and phylogeny. University of California Press, Berkeley, pp 425–431Google Scholar
  57. Raftos DA (1996) Histocompatibility reactions in invertebrates.In: Cooper EL (ed) Invertebrate immune responses: cell activities and the environment. (Advances in comparative and environmental physiology, vol 24) Springer, Berlin Heidelberg New York, pp 77–121Google Scholar
  58. Richardson CA, Dustan P, Lang J (1979) Maintenance ofliving space by sweeper tentacles of Montastrea cavernosa, a Caribbean reef coral. Mar Biol 55:181–186CrossRefGoogle Scholar
  59. Rodriguez-Lanetty M, Phillips W, Weis VM (2006) Transcriptome analysis of a cnidarian–dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 7:23PubMedCrossRefGoogle Scholar
  60. Sebens KP (1984) Agonistic behavior in the intertidal sea anemone Arthropleura xanthogrammica. Biol Bull (Woods Hole, Mass) 166:457–472CrossRefGoogle Scholar
  61. Sebens KP, Miles JS (1988) Sweeper tentacles in a gorgoniaoctocoral: morphological modifications for interference competition. Biol Bull (Woods Hole, Mass) 175:378–387CrossRefGoogle Scholar
  62. Shenk MA, Buss LW (1991) Ontogenetic changes in fusibility in the colonial hydroid Hydractinia symbiolongicarpus. J Exp Zool 257:80–86CrossRefGoogle Scholar
  63. Technau U, et al (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639PubMedCrossRefGoogle Scholar
  64. Thorington G, Margulis L (1981) Hydra viridis: transfer of metabolites between Hydra and symbiotic algae. Biol Bull 160:175–188PubMedCrossRefGoogle Scholar
  65. Wellington GM (1980) Reversal of digestive interactions between Pacific reef corals: mediation by sweeper tentacles. Oecologia 47:340–343CrossRefGoogle Scholar
  66. Wittlieb J, Khalturin K, Lohmann J, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 103:6208–6211PubMedCrossRefGoogle Scholar
  67. Yund PO, Cunningham CW, Buss LW (1987) Recruitment and post-recruitment interactions in a colonial hydroid. Ecology 68:971–982CrossRefGoogle Scholar
  68. Yund PO, Parker HM (1989) Population structure of the colonial hydroid Hydractinia sp. nov. C in the Gulf of Maine. J Exp Mar Biol Ecol 125:63–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
  1. 1.Zoological InstituteChristian-Albrechts-University KielKielGermany

Personalised recommendations