Skip to main content

The Complement System in Innate Immunity

  • Chapter

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC,volume 21)

Complement is an important component of the innate immune defence of animals against infectious agents. The complement system in mammals is well characterised and consists of about 35–40 proteins, present in blood plasma and other body fluids, and also on cell surfaces. The function of complement is to rec-ognise and opsonise particulate materials including invading micro-organisms and “altered-self” cells (dying, infected or damaged host cells). Recognition of a target by large polymeric complement proteins including C1q, MBL and the ficolins results in activation of proteases which cleave complement protein C3, a thiolester-containing protein (TEP) which binds covalently to the target. Target-bound complement proteins opsonise the target by promoting interaction with phagocytic cells which express complement receptors. The complement system appears to be highly conserved in vertebrates, although research on reptiles and amphibians is limited. Only a few invertebrate animals have been studied, but likely ortho-logues of complement target-recognition proteins, proteases and TEPs have been demonstrated in cephalochordates, urochordates, echinoderms, arthropods and coe-lenterates. This suggests that complement-like activity has been important in host defence since an early stage in the evolution of multicellular animals.

Keywords

  • Complement System
  • Classical Pathway
  • Complement Protein
  • Membrane Attack Complex
  • Lectin Pathway

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-73930-2_10
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-73930-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberti S, Marques G, Camprubi S, Merino S, Tomas JM, Vivanco F, Benedi VJ (1993) C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun 61:852

    PubMed  CAS  Google Scholar 

  • Arnold JN, Wormald MR, Suter DM, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM, Sim RB (2005) Human serum IgM glycosylation: identification of glycoforms that can bind to mannan-binding lectin. J Biol Chem 280:29080

    PubMed  CrossRef  CAS  Google Scholar 

  • Arosa FA, De Jesus O, Porto G, Carmo AM, De Sousa M (1999) Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem 274:16917

    PubMed  CrossRef  CAS  Google Scholar 

  • Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto MR, Marino R, Shida K, Ikeda M, Ikeda M, Arai M, Inoue Y, Shimizu T, Satoh N, Rokhsar DS, Du Pasquier L, Kasahara M, Satake M, Nonaka M (2003) Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55:570–581

    PubMed  CrossRef  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1991) Complement lysis: a hole is a hole. Immunol Today 12:318

    PubMed  CrossRef  CAS  Google Scholar 

  • Butko P, Nicholson-Weller A, Wessels MR (1999) Role of complement component C1q in the IgG-independent opsonophagocytosis of group B streptococcus. J Immunol 163:2761

    PubMed  CAS  Google Scholar 

  • Carreno MP, Labarre D, Maillet F, Jozefowicz M, Kazatchkine MD (1989) Regulation of the human alternative complement pathway: formation of a ternary complex between factor H, surface-bound C3b and chemical groups on nonactivating surfaces. Eur J Immunol 19:2145

    PubMed  CrossRef  CAS  Google Scholar 

  • Dodds AW (2002) Which came first, the lectin/classical pathway or the alternative pathway of complement? Immunobiology. 205:340–354

    PubMed  CrossRef  CAS  Google Scholar 

  • Dodds AW, Law SK (1998) The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin.Immunol Rev. 166:15–26

    PubMed  CrossRef  CAS  Google Scholar 

  • Dodds AW, Matsushita M (2007) The phylogeny of the complement system and the origin of the complement classical pathway. Immunobiology 212:233–243

    PubMed  CrossRef  CAS  Google Scholar 

  • Ebenbichler CF, Thielens NM, Vornhagen R, Marschang P, Arlaud GJ, Dierich MP (1991) Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41. J Exp Med 174:1417

    PubMed  CrossRef  CAS  Google Scholar 

  • Endo Y, Takahashi M, Fujita T (2006) Lectin complement system and pattern recognition. Immunobiology 211:283

    PubMed  CrossRef  CAS  Google Scholar 

  • Esser AF (1991) Big MAC attack: complement proteins cause leaky patches. Immunol Today 12:316

    PubMed  CrossRef  CAS  Google Scholar 

  • Fearon DT, Austen KF (1975) Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase. J Exp Med 142:856

    PubMed  CrossRef  CAS  Google Scholar 

  • Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway – its role in innate immunity and evolution. Immunol Rev 198:185–202

    PubMed  CrossRef  CAS  Google Scholar 

  • Gaboriaud C, Juanhuix J, Gruez A, Lacroix M, Darnault C, Pignol D, Verger D, Fontecilla-Camps JC, Arlaud GJ (2003) The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. J Biol Chem 278:46974

    PubMed  CrossRef  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    PubMed  CrossRef  CAS  Google Scholar 

  • Ghiran I, Klickstein LB, Nicholson-Weller A (2003) Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J Biol Chem. 278:21024–21031

    PubMed  CrossRef  CAS  Google Scholar 

  • Hajela K, Kojima M, AmbrusG, Wong KH, Moffatt BE, Ferluga J, Hajela S, Gal P, Sim RB (2002) The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 205:467

    PubMed  CrossRef  CAS  Google Scholar 

  • Heine-Suner D, Diaz-Guillen MA, De Villena FP, Robledo M, Benitez J, Rodriguez de Cordoba S (1997) A high-resolution map of the regulator of the complement activation gene cluster on 1q32 that integrates new genes and markers. Immunogenetics 45:422–427

    PubMed  CrossRef  CAS  Google Scholar 

  • Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, Seppala IJ, Meri S (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427

    PubMed  CrossRef  CAS  Google Scholar 

  • Helmy KY, Katschke KJ, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, Van Lookeren Campagne M (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927

    PubMed  CrossRef  CAS  Google Scholar 

  • Horstmann RD, Sievertsen HJ, Knobloch J, Fischetti VA (1988) Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci USA 85:1657

    PubMed  CrossRef  CAS  Google Scholar 

  • Hourcade D, Liszewski ME, Krych-Goldberg M, Atkinson JP (2000) Functional domains, structural variations and pathogen interactions of MCP, DAF and CR1. Immunopharmacology 49:103–116

    PubMed  CrossRef  CAS  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197

    PubMed  CrossRef  CAS  Google Scholar 

  • Kishore U, Gupta SK, Perdikoulis MV, Kojouharova MS, Urban BC, Reid KB (2003) Modular organization of the carboxyl-terminal, globular head region of human C1q A, B, and C chains. J Immunol 171:812

    PubMed  CAS  Google Scholar 

  • Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525

    PubMed  CAS  Google Scholar 

  • Krarup A, Thiel S, Hansen A, Fujita T, Jensenius J-C (2004) L-ficolin is a pattern recognition molecule specific for acetyl groups. J Biol Chem 279:47513

    PubMed  CrossRef  CAS  Google Scholar 

  • Krarup A, Sorensen UB, Matsushita M, Jensenius J-C, Thiel S (2005) Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-ficolin, and H-ficolin.Infect Immun 73:1052

    PubMed  CrossRef  CAS  Google Scholar 

  • Law SKA, Reid KBM (1995) Complement, second edition. In: Male D (ed) In focus. Oxford, UK: IRL Press

    Google Scholar 

  • Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu XF, Schuh AC (2002) Cell surface antigen CD109 is a novel member of the alpha(2) macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood 99:1683–1691

    PubMed  CrossRef  CAS  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237

    PubMed  CrossRef  CAS  Google Scholar 

  • Mayilyan KR, Presanis JS, ArnoldJN, Hajela K, Sim RB (2006) Heterogeneity of MBL-MASP complexes. Mol Immunol 43:1286–1292

    PubMed  CrossRef  CAS  Google Scholar 

  • McAleer MA, Sim RB (1993) The complement system. In: Sim RB (ed) Activators and Inhibitors of Complement. Kluwer, Dordrecht, pp 1–15

    Google Scholar 

  • McMullen ME, Hart ML, Walsh MC, Buras J, Takahashi K, Stahl GL (2006) Mannose-binding lectin binds IgM to activate the lectin complement pathway in vitro and in vivo. Immunobiology 211:759–766

    PubMed  CrossRef  CAS  Google Scholar 

  • Meri S, Pangburn MK (1990) Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 87:3982

    PubMed  CrossRef  CAS  Google Scholar 

  • Mevorach D, Mascarenhas JO, Gershov D, Elkon KB (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188:2313

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakao M, Mutsuro J, Nakahara M, Kato Y, Yano T (2003) Expansion of genes encoding complement components in bony fish: biological implications of the complement diversity. Dev Comp Immunol 27:749–762

    PubMed  CrossRef  CAS  Google Scholar 

  • Nauta AJ, Daha MR, Van Kooten C, Roos A (2003) Recognition and clearance of apoptotic cells: a role for complement and pentraxins. Trends Immunol 24:148

    PubMed  CrossRef  CAS  Google Scholar 

  • Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58:701–713

    PubMed  CrossRef  CAS  Google Scholar 

  • Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781

    PubMed  CrossRef  CAS  Google Scholar 

  • Petersen SV, Thiel S, Jensenius J-C (2001) The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38:133–149

    PubMed  CrossRef  CAS  Google Scholar 

  • Presanis JS, Hajela K, Ambrus G, Gal P, Sim RB (2004) Differential substrate and inhibitor profiles for human MASP-1 and MASP-2. Mol Immunol 40:921

    PubMed  CrossRef  CAS  Google Scholar 

  • Rodriguez de Cordoba S, Lublin DM, Rubinstein P, Atkinson JP (1985) Human genes for three complement components that regulate the activation of C3 are tightly linked. J Exp Med 161:1189–1195

    PubMed  CrossRef  CAS  Google Scholar 

  • Roos A, Bouwman LH, Gijlswijk-Janssen DJ van, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861

    PubMed  CAS  Google Scholar 

  • Schneider MC, Exley RM, Chan H, Feavers I, Kang YH, Sim RB, Tang CM (2006) Functional significance of factor H binding to Neisseria meningitidis. J Immunol 176:7566

    PubMed  CAS  Google Scholar 

  • Sim RB, Malhotra R(1994) Interactions of carbohydrates and lectins with complement. Biochem Soc Trans 22:106

    PubMed  CAS  Google Scholar 

  • Sim RB, Sim E (1981) Autolytic fragmentation of complement components C3 and C4 under denaturing conditions, a property shared with alpha 2-macroglobulin. Biochem J 193:129–141

    PubMed  CAS  Google Scholar 

  • Sim RB, Tsiftsoglou SA (2004) Proteases of the complement system. Biochem Soc Trans 32:21

    PubMed  CrossRef  CAS  Google Scholar 

  • Sim RB, Arlaud GJ, Colomb MG (1979) C1 inhibitor-dependent dissociation of human complement component C1 bound to immune complexes. Biochem J 179:449

    PubMed  CAS  Google Scholar 

  • Sim RB, Twose TM, Paterson DS, Sim E (1981) The covalent-binding reaction of complement component C3. Biochem J 193:115–127

    PubMed  CAS  Google Scholar 

  • Sim RB, Day AJ, Moffatt BE, Fontaine M (1993a) Complement factor I and cofactors in control of complement system convertase enzymes. Methods Enzymol 223:13

    PubMed  CrossRef  CAS  Google Scholar 

  • Sim RB, Kolble K, McAleer MA, Dominguez O, Dee VM (1993b) Genetics and deficiencies of the soluble regulatory proteins of the complement system. Int Rev Immunol 10:65–86

    PubMed  CrossRef  CAS  Google Scholar 

  • Sim RB, Moestrup SK, Stuart GR, Lynch NJ, Lu J, Schwaeble WJ, Malhotra R (1998) Interaction of C1q and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 199:208

    PubMed  CAS  Google Scholar 

  • Smith SL (1998) Shark complement:an assessment. Immunol Rev 166:67–78

    PubMed  CrossRef  CAS  Google Scholar 

  • Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, Walport MJ, Fisher JH, Henson PM, Greene KE (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978

    PubMed  CAS  Google Scholar 

  • Vorup-Jensen T, Petersen SV, Hansen AG, Poulsen K, Schwaeble W, Sim RB, Reid KB, Davis SJ, Thiel S, Jensenius J-C (2000) Distinct pathways of mannan-binding lectin (MBL)- and C1-complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2. J Immunol 165:2093

    PubMed  CAS  Google Scholar 

  • Walport MJ (2001a) Complement. First of two parts. N Engl J Med 344:1058

    PubMed  CrossRef  CAS  Google Scholar 

  • Walport MJ (2001b) Complement. Second of two parts. N Engl J Med 344:1140

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayilyan, K.R., Kang, Y.H., Dodds, A.W., Sim, R.B. (2008). The Complement System in Innate Immunity. In: Heine, H. (eds) Innate Immunity of Plants, Animals, and Humans. Nucleic Acids and Molecular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73930-2_10

Download citation