Advertisement

Nonsmooth Riemannian Optimization with Applications to Sphere Packing and Grasping

  • Gunther Dirr
  • Uwe Helmke
  • Christian Lageman
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 366)

Abstract

This paper presents a survey on Riemannian geometry methods for smooth and nonsmooth constrained optimization. Gradient and subgradient descent algorithms on a Riemannian manifold are discussed. We illustrate the methods by applications from robotics and multi antenna communication. Gradient descent algorithms for dextrous hand grasping and for sphere packing problems on Grassmann manifolds are presented respectively.

Keywords

Riemannian Manifold Descent Direction Sphere Packing Grassmann Manifold Chordal Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.-A. Absil, R. Mahony, and B. Andrews. Convergence of iterates of descent methods for analytic cost functions. SIAM J. Optimization, 16(2):531–547, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Agrawal, T. J. Richardson, and R. L. Urbanke. Multiple-antenna signal constellations for fading channels. IEEE Trans. Information Theory, 47(6):2618–2626, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    B. Andrews. Monotone quantities and unique limits for evolving convex hypersurfaces. International Mathematics Research Notices, 20:1002–1031, 1997.Google Scholar
  4. 4.
    J.-P. Aubin and A. Cellina. Differential inclusions. Set-valued maps and viability theory. Springer-Verlag, Berlin, 1984.zbMATHGoogle Scholar
  5. 5.
    M. Buss, L. Hashimoto, and J. Moore. Dextrous hand grasping force optimization. IEEE Trans. Robotics and Automation, 12:267–269, 1996CrossRefGoogle Scholar
  6. 6.
    F. Clarke, Y. Ledyaev, R. Stern, and P. Wolenski. Nonsmooth analysis and control theory. Springer-Verlag, New York, 1998.zbMATHGoogle Scholar
  7. 7.
    J. H. Conway, R. H. Hardin, and N. J. A. Sloane. packing lines, planes, etc.: Packings in Grassmannian spaces. Experimental Mathematics, 5:139–159, 1996.zbMATHMathSciNetGoogle Scholar
  8. 8.
    G. Dirr, U. Helmke, and C. Lageman. Some applications of Riemannian optimization to mechanics. 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Nagoya, Japan, 2006.Google Scholar
  9. 9.
    D. Gabay. Minimizing a differentiable function over a differentiable manifold. J. Optimization Theory and Appl., 37:177–219, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Springer-Verlag, Berlin, 2004.zbMATHGoogle Scholar
  11. 11.
    G. Han and J. Rosenthal. Geometrical and numerical design of structured unitary space time constellations. IEEE Trans. Information Theory, 52(8), 2006.Google Scholar
  12. 12.
    U. Helmke, K. Hüper, and J. Moore. Quadratically convergent algorithms for optimal dextrous hand grasping. IEEE Trans. Robotics and Automation, 18:138–146, 2002.CrossRefGoogle Scholar
  13. 13.
    U. Helmke, K. Hüper, and J. Trumpf. Newton’s method on Grassmann manifolds. Preprint, 2006.Google Scholar
  14. 14.
    U. Helmke and J. Moore. Optimization and Dynamical Systems. Springer-Publ., London, 1994.Google Scholar
  15. 15.
    J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms. Part 1: Fundamentals. Springer-Verlag, Berlin, 1993.zbMATHGoogle Scholar
  16. 16.
    B. M. Hochwald and T. L. Marzetta. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Trans. Information Theory, 46(2):543–564, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    C. Lageman. Pointwise convergence of gradient-like systems. submitted to Mathematische Nachrichten Google Scholar
  18. 18.
    C. Lageman. Convergence of gradient-like dynamical systems and optimizations algorithms. PhD Thesis, Submitted, 2007Google Scholar
  19. 19.
    C. Lageman and U. Helmke. Optimization methods for the sphere packing problem on Grassmannians. In F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley, and S. Laghrouche, editors, Taming Heterogeneity and Complexity of Embedded Control: CTS-HYCON Workshop on Nonlinear and Hybrid Control. Paris IV Sorbonnne, 10–12 July 2006, 2007.Google Scholar
  20. 20.
    S. Lojasiewicz. Sur les trajectoires du gradient ďune fonction analytique. In Seminari di Geometria 1982–1983, pages 115–117, Università di Bologna, 1984.Google Scholar
  21. 21.
    B. E. Paden and S. S. Sastry. A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans. Circuits and Systems, CAS-34(1), 1987.Google Scholar
  22. 22.
    M. Shub, Some remarks on dynamical systems and numerical analysis. In J. L. L. Lara-Carrero, editor, Dynamical Systems and Partial Differential Equations: Proc. VII ELAM, pages 69–92. U. Simon Bolivar, Caracas, 1986.Google Scholar
  23. 23.
    S. Smith, Geometric optimization methods for adaptive filtering. PhD thesis, Harvard University, 1993.Google Scholar
  24. 24.
    A. R. Teel. Lyapunov methods in nonsmooth optimization. Part I: Quasi-Newton algorithms for Lipschitz regular functions. In Proc. 39th IEEE Conference on Decision and Control, 2000, volume 1, pages 112–117, 2000.Google Scholar
  25. 25.
    C. Udriste. Convex functions and optimization methods on Riemannian, manifolds. Kluwer Academic Publ., Dordrecht, 1994.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gunther Dirr
    • 1
  • Uwe Helmke
    • 1
  • Christian Lageman
    • 1
  1. 1.Institute of MathematicsUniversity of WürzburgWürzburgGermany

Personalised recommendations