An Internal Model Approach to Implicit Fault Tolerant Control for Port-Hamiltonian Systems

  • Luca Gentili
  • Andrea Paoli
  • Claudio Bonivento
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 366)


In this paper an internal model based approach to implicit Fault Tolerant Control for port-Hamiltonian systems is presented: the main idea is to cast the problem into a regulation problem in presence of input disturbances representing exogenous effects of possible faults; this can be solved following an adaptive internal model based approach. The theoretical machinery exploited is specialized for the energy-based port-Hamiltonian formalism in order to prove the global asymptotical stability of the solution. Finally an application example is presented in order to deeply point out the effectiveness of the design procedure presented: a Fault Tolerant Control problem is solved for a magnetic levitation system affected by periodic voltage disturbances.


Internal Model Global Asymptotical Stability Control System Technology Exogenous Disturbance Sylvester Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astolfi A, Isidori A, Marconi L (2003) A note on disturbance suppression for hamiltonian systems by state feedback. 2nd IFAC Workshop LHMNLC, Seville, SpainGoogle Scholar
  2. 2.
    Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2003) Diagnosis and faulttolerant control. Springer-VerlagGoogle Scholar
  3. 3.
    Bonivento C, Gentili L, Paoli A (2004a) Internal model based fault tolerant control of a robot manipulator. 43rd Conference on Decision and Control, Paradise Island, BahamasGoogle Scholar
  4. 4.
    Bonivento C, Isidori A, Marconi L, Paoli A (2004b) Implicit fault tolerant control: Application to induction motors. Automatica 40(3):355–371zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Byrnes C, Delli Priscoli F, Isidori A (1997a) Output regulation of uncertain nonlinear systems. Birkhäuser, BostonzbMATHGoogle Scholar
  6. 6.
    Canudas de Wit C, Praly L (2000) Adaptive eccentricity compensation. IEEE Transactions on Control Systems Technology 8(5):757–766CrossRefGoogle Scholar
  7. 7.
    Frank P (1990) Fault diagnosis in dynamic systems using analitical and knowledge based redundancy: a survey and some new results. Automatica 26(3):459–474zbMATHCrossRefGoogle Scholar
  8. 8.
    Fujimoto K, Sakurama K, Sugie T (2003) Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica 39(12):2059–2069zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gentili L, van der Schaft A (2003) Regulation and input disturbance suppression for port-controlled Hamiltonian systems. 2nd IFAC Workshop LHMNLC, Seville, SpainGoogle Scholar
  10. 10.
    Isidori A (1995) Nonlinear Control Systems. Springer-Verlag, LondonzbMATHGoogle Scholar
  11. 11.
    Isidori A, Marconi L, Serrani A (2003) Robust Autonomous Guidance: An Internal Model-based Approach. Limited series Advances in Industrial Control, Springer Verlag, LondonGoogle Scholar
  12. 12.
    Maschke B, van der Schaft A (1992) Port-controlled hamiltonian system: modelling origins and system theoretic approach. 2nd IFAC NOLCOS, Bordeaux, FranceGoogle Scholar
  13. 13.
    Nikiforov V (1998) A daptive non-linear tracking with complete compensation of unknown disturbances. European Journal of Control 4:132–139zbMATHGoogle Scholar
  14. 14.
    Ortega R (2003) Some applications and recent results on passivity based control. 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, SpainGoogle Scholar
  15. 15.
    Patton R, Frank P, Clark R (2000) Issues of fault diagnosis for dynamical systems. Springer-Verlag, LondonGoogle Scholar
  16. 16.
    Serrani A, Isidori A, Marconi L (2001) Semiglobal output regulation with adaptive internal model. IEEE Transaction On Automatic Control 46(8):1178–1194zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    van der Schaft A (1999) L 2-gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, LondonGoogle Scholar
  18. 18.
    Bonivento C, Gentili L, Paoli A (2005) Fault tolerant tracking of a robot manipulator: an internal model based approach. Current Trends in Nolinear Systems and Control, Birkhäuser, Boston: 271–287Google Scholar
  19. 19.
    Bonivento C, Gentili L, Marconi L (2005) Balanced Robust Regulation of a Magnetic Levitation System. IEEE Trans. Control System Technology 13(6):1036–1044CrossRefGoogle Scholar
  20. 20.
    Alleyne A (2000) Control of a class of nonlinear systems subject to periodic exogenous signals. IEEE Trans. on Control Systems Technology 8(2):279–287CrossRefGoogle Scholar
  21. 21.
    Charara A, De Miras J, Caron B (1996) Nonlinear control of a magnetic levitation system without premagnetization. IEEE Transaction on Control Systems Technology 4(5):513–523CrossRefGoogle Scholar
  22. 22.
    Marino R, Santosuosso G L, Tomei P (2003) Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica 19(10):1755–1761CrossRefMathSciNetGoogle Scholar
  23. 23.
    Bodson M, Douglas S C (1997) Adaptive algorithms for the rejection of periodic disturbances with unknown frequencies. Automatica 33(12):2213–2221zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ortega R, van der Schaft A, Maschke B, Escobar G (1999) Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4):585–596CrossRefGoogle Scholar
  25. 25.
    Gentili L, Marconi L (2003) Robust Nonlinear Disturbance Suppression of a Magnetic Levitation System. Automatica 39(4):735–742zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luca Gentili
    • 1
  • Andrea Paoli
    • 1
  • Claudio Bonivento
    • 1
  1. 1.CASY-DEIS University of BolognaBolognaItaly

Personalised recommendations