Simultaneous Interconnection and Damping Assignment Passivity-Based Control: Two Practical Examples

  • Carles Batlle
  • Arnau Dòria-Cerezo
  • Gerardo Espinosa-Pérez
  • Romeo Ortega


Passivity-based control (PBC) is a generic name given to a family of controller design techniques that achieves system stabilization via the route of passivation, that is, rendering the closed-loop system passive with a desired storage function (that usually qualifies as a Lyapunov function for the stability analysis.) If the passivity property turns out to be output strict, with an output signal with respect to which the system is detectable, then asymptotic stability is ensured. See the monographs [5, 12], and [6] for a recent survey.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batlle, C., A. Dòria-Cerezo and R. Ortega (2005) Power flow control of a doubly-fed induction machine coupled to a flywheel European Journal of Control 11:3 209–221CrossRefMathSciNetGoogle Scholar
  2. 2.
    Fujimoto, K. and T. Sugie (2001) Canonical transformations and stabilization of generalized hamiltonian systems Systems and Control Letters 42:3 217–227CrossRefMathSciNetGoogle Scholar
  3. 3.
    Karagiannis, D., A. Astolfi, R. Ortega and M. Hilairet (2005) A nonlinear tracking controller for voltage-fed induction motors with uncertain load torque. Internal report, LSS Supelec, FranceGoogle Scholar
  4. 4.
    Ortega, R., A. van der Schaft, B. Maschke and G. Escobar (2002) Interconnection and Damping Assignment Passivity-based Control of Port-controlled Hamiltonian Systems AUTOMATICA 38:4 585–596MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ortega, R., A. Loria, P.J. Nicklasson and H. Sira-Ramírez (1998) Passivity-based Control of Euler-Lagrange Systems. Communications and Control Engineering. Springer-Verlag, BerlinGoogle Scholar
  6. 6.
    Ortega, R. and E. Garcia-Canseco (2004) Interconnection and Damping Assignment Passivity-Based Control: A Survey European Journal of Control 10:432–450MathSciNetGoogle Scholar
  7. 7.
    Ortega, R. and G. Espinosa (1993) Torque regulation of induction motors AUTOMATICA 47:8 621–633CrossRefGoogle Scholar
  8. 8.
    Ortega, R., M. Spong, F. Gomez and G. Blankenstein (2002a) Stabilization of underactuated mechanical systems via interconnection and damping assignment IEEE Trans. Automatic Control 47:8 1218–1233CrossRefGoogle Scholar
  9. 9.
    Peresada, S., A. Tilli and A. Tonelli (2004) Power control of a doubly fed induction machine via output feedback Control Engineering Practice 12:41–57CrossRefGoogle Scholar
  10. 10.
    Sepulchre, R., M. Janković and P. Kokotović (1997) Constructive Nonlinear Control. Springer-Verlag, LondonMATHGoogle Scholar
  11. 11.
    Takegaki, M. and S. Arimoto (1981) A new feedback for dynamic control of manipulators Trans. of the ASME: Journal of Dynamic Systems, Measurement and Control 102:119–125CrossRefGoogle Scholar
  12. 12.
    van der Schaft, A. (2000) L 2-Gain and Passivity Techniques in Nonlinear Control. 2nd edition. Springer-Verlag, LondonMATHGoogle Scholar
  13. 13.
    Krause, P.C., O. Wasynczuk and S.D. Sudhoff (1995) Analysis of Electric Machinery. IEEE Press, USA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carles Batlle
    • 1
  • Arnau Dòria-Cerezo
    • 1
  • Gerardo Espinosa-Pérez
    • 2
  • Romeo Ortega
    • 3
  1. 1.MA4, DEE and IOC, EPSEVGUPCVilanova i la GeltrúSpain
  2. 2.DEPFI-UNAMMéxico, D.F.Mexico
  3. 3.Laboratoire des Signaux et SystémesSUPELECGif-sur-YvetteFrance

Personalised recommendations