AOG-ags Algorithms and Applications

  • Lizhen Wang
  • Junli Lu
  • Joan Lu
  • Jim Yip
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4632)

Abstract

The attribute-oriented generalization (AOG for short) method is one of the most important data mining methods. In this paper, a reasonable approach of AOG (AOG-ags, attribute-oriented generalization based on attributes’ generalization sequence), which expands the traditional AOG method efficiently, is proposed. By introducing equivalence partition trees, an optimization algorithm of the AOG-ags is devised. Defining interestingness of attributes’ generalization sequences, the selection problem of attributes’ generalization sequences is solved. Extensive experimental results show that the AOG-ags are useful and efficient. Particularly, by using the AOG-ags algorithm in a plant distributing dataset, some distributing rules for the species of plants in an area are found interesting.

Keywords

Attribute-oriented generalization (AOG) Concept hierarchy trees Attributes’ generalization sequences (AGS) Equivalence partition trees Interestingness of AGS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, Y., Cercone, N., Han, J.: Attribute-Oriented Induction in Relational Databases. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, Menlo Park, Calif., pp. 213–228. AAAI/MIT Press, Cambridge (1991)Google Scholar
  2. 2.
    Han, J.: Towards Efficient induction mechanisms in database systems. Theoretical Computering Science 133, 361–385 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Wang, L.: A method of the abstract generalization on the bases of the semantic proximity. Chinese J. Computers 23(10), 1114–1121 (2000)Google Scholar
  4. 4.
    Carter, C.L., Hamilton, H.J.: Efficient attributed-oriented generalization for knowledge discovery from large databases. IEEE Trans. on Knowledge and Data Eng. 10(2), 193–208 (1998)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Wang, L.: Quantifiable Attribute-Oriented Generalization. Journal of Computer Research & Development 38(2), 150–156 (2001)Google Scholar
  6. 6.
    Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann publishers, San Francisco (2001)Google Scholar
  7. 7.
    Estivill-Castro, V., Lee, I.: Data Mining Techniques for Autonomous Exploration of Large Volumes of Geo-Referenced Crime Data. In: Proc. Sixth Int’l Conf. Geocomputation (2001)Google Scholar
  8. 8.
    Estivill-Castro, V., Murray, A.: Discovering Associations in Spatial Data—An Efficient Medoid Based Approach. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographic Information Databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Xie, K., Chen, T., Ma, X.: Efficient discovery of multilevel spatial association rule using partition. Information and Software Technology (IST) 47(13), 829–840 (2005)CrossRefGoogle Scholar
  11. 11.
    Morimoto, Y.: Mining Frequent Neighboring Class Sets in Spatial Databases. In: Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 353–358 (2001)Google Scholar
  12. 12.
    Xiong, H., Shekhar, S., Huang, Y., Kumar, V., Ma, X., Yoo, J.S.: A Framework for Discovering Co-location Patterns in Data Sets with Extended Spatial Objects. In: SDM. Proc. 2004 SIAM International Conference on Data Mining, pp. 1–12 (2004)Google Scholar
  13. 13.
    Huang, Y., Shekhar, S., Xiong, H.: Discovering Colocation Patterns from Spatial Data Sets: A General Approach. IEEE Transactions on Knowledge and Data Engineering 2004, 1472–1485 (2004)CrossRefGoogle Scholar
  14. 14.
    Yoo, J.S., Shekhar, S.: A partial Join Approach for Mining Co-location Patterns. In: Proc. of the 12th annual ACM international workshop on Geographic information systems, pp. 241–249 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Lizhen Wang
    • 1
    • 2
  • Junli Lu
    • 1
  • Joan Lu
    • 2
  • Jim Yip
    • 2
  1. 1.Department of Computer Science and Engineering, School of Information, Yunnan, University, Kunming, 650091P.R. China
  2. 2.Department of Informatics, School of Computing and Engineering, University of, Huddersfield, Huddersfield, HD1 3DHUK

Personalised recommendations