Skip to main content

Dimensionality Reduction for Mass Spectrometry Data

  • Conference paper
Advanced Data Mining and Applications (ADMA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4632))

Included in the following conference series:

Abstract

In this paper multilevel wavelet analysis is performed for high dimensional mass spectrometry data. A set of wavelet approximation coefficients at different scale is used to characterize the features of mass spectrometry data. Approximation coefficients compress mass spectrometry data and act as “fingerprint” of mass spectrometry data. Support vector machine is used to classify the different tissue based on these wavelet features. 2 and 3 fold cross validation experiments are performed on 2 datasets based on approximation coefficients at 1st, 2nd and 3rd level decomposition respectively. A highly competitive accuracy in comparison to the best performance of other kinds of classification models is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359, 572–577 (2002)

    Article  Google Scholar 

  2. Sorace, J.M., Zhan, M.: A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinform 4 (2003)

    Google Scholar 

  3. Michener, C.M., Ardekani, A.M., Petricoin, E.F., Liotta 3rd, L.A., Kohn, E.C.: Genomics and proteomics: application of novel technology to early detection and prevention of cancer. Cancer Detect Prev. 26, 249–255 (2002)

    Article  Google Scholar 

  4. Petricoin, E.F., Zoon, K.C., Kohn, E.C., Barrett, J.C., Liotta, L.A.: Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug. Discov. 1, 683–695 (2002)

    Article  Google Scholar 

  5. Srinivas, P.R., Verma, M., Zhao, Y., Srivastava, S.: Proteomics for cancer biomarker discovery. Clin. Chem. 48, 1160–1169 (2002)

    Google Scholar 

  6. Herrmann, P.C., Liotta, L.A., Petricoin III, E.F.: Cancer proteomics: the state of the art. Dis. Markers 17, 49–57 (2001)

    Article  Google Scholar 

  7. W. Jr., G., Cazares, L.H., Leung, S.M., Nasim, S., Adam, B.L., Yip, T.T., Schellhammer, P.F., Gong, L., Vlahou, A.: Proteinchip surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 2, 264–276 (1999)

    Google Scholar 

  8. Vlahou, A., Schellhammer, P.F., Mendrinos, S., Patel, K., Kondylis, F.I., Gong, L., Nasim, S., Wright Jr.: Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am. J. Pathol. 158, 1491–1520 (2001)

    Article  Google Scholar 

  9. Lilien, R.H., Farid, H., Donald, B.R.: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. Computational Biology 10 (2003)

    Google Scholar 

  10. Park, H., Jeon, M., Rosen, J.B.: Lower dimensional representation of text data based on centroids and least squares. BIT 43, 1–22 (2003)

    Article  MathSciNet  Google Scholar 

  11. Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., Zhao, H.: Comparison of statistical methods for classifcation of ovarian cancer using mass spectrometry data. BioInformatics 19 (2003)

    Google Scholar 

  12. Jeffries, N.O.: Performance of a genetic algorithm for mass spectrometry proteomics. BMC Bioinformatics 5 (2004)

    Google Scholar 

  13. Levner, I.: Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 6 (2005)

    Google Scholar 

  14. Yu, J.S., Ongarello, S., Fiedler, R., Chen, X.W., Toffolo, G., Cobelli, C., Trajanoski, Z.: Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21, 2200–2209 (2005)

    Article  Google Scholar 

  15. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  16. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  18. Burges, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  19. Kohane, I.S., Kho, A.T., Butte, A.J.: Microarrays for an Integrative Genomics. MIT Press, Cambridge (2003)

    Google Scholar 

  20. Petricoin, E.F., Ornstein III, D.K., Paweletz, C.P., Ardekani, A., Hackett, P.S., Hitt, B.A., Velassco, A., Trucco, C., Wiegand, L., Wood, K., Simone, C.B., Levine, P.J., Linehan, W.M., Emmert-Buck, M.R., Steinberg, S.M., Kohn, E.C., Liotta, L.A.: Serum proteomic patterns for detection of prostate cancer. J. Natl. Cancer Inst. 94, 1576–1578 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Liu, Y. (2007). Dimensionality Reduction for Mass Spectrometry Data. In: Alhajj, R., Gao, H., Li, J., Li, X., Zaïane, O.R. (eds) Advanced Data Mining and Applications. ADMA 2007. Lecture Notes in Computer Science(), vol 4632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73871-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73871-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73870-1

  • Online ISBN: 978-3-540-73871-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics