Skip to main content

The Visual Complexity of Pollock’s Dripped Fractals

  • Conference paper

Abstract

Fractals have experienced considerable success in quantifying the complex structure exhibited by many natural patterns and have captured the imagination of scientists and artists alike [Mandelbrot]. With ever widening appeal, they have been referred to both as “fingerprints of nature” [Taylor et al 1999] and “the new aesthetics” [Richards]. Recently, we showed that the drip patterns of the American abstract painter Jackson Pollock are fractal [Taylor et al 1999]. In this paper, we describe visual perception tests that investigate whether fractal images generated by mathematical, natural and human processes possess a shared aesthetic quality based on visual complexity.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-73849-7_20
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-73849-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aks, D, and Sprott, J, 1996, Quantifying aesthetic preference for chaotic patterns, Empirical Studies of the Arts, 14 1.

    Google Scholar 

  • Burrough, P.A., 1981, Fractal dimensions of landscapes and other environmental data, Nature, 295 240–242.

    CrossRef  ADS  Google Scholar 

  • Cambel, A.B., 1993, Applied Chaos Theory: A Paradigm for Complexity, Academic Press, (London).

    MATH  Google Scholar 

  • Chopard, B., Hermann, H.J., and Vicsek, T., 1991, Structure and growth mechanism of mineral dendrites, Nature, 309 409.

    CrossRef  ADS  Google Scholar 

  • Cutting, J. E. and Garvin, J.J, 1987, Fractal curves and complexity, Perception & Psychophysics, 42 365–370.

    Google Scholar 

  • Family, F., Masters, B.R. and Platt. D.E., 1989, Fractal pattern formation in human retinal vessels. Physica D, 38 98.

    CrossRef  ADS  Google Scholar 

  • Feder, J. 1988, Fractals Plenum (New York).

    MATH  Google Scholar 

  • Geake, J., and Landini, G., 1997, Individual differences in the perception of fractal curves, Fractals, 5, 129–143.

    MATH  CrossRef  Google Scholar 

  • Gilden, D.L., Schmuckler, M.A. and Clayton K., 1993, The perception of natural contour, Psychological Review, 100 460–478.

    CrossRef  Google Scholar 

  • Knill, D.C., and Kersten, D., 1990, Human discrimination of fractal images, Journal of the Optical Society of America, 7 1113–1123.

    ADS  CrossRef  Google Scholar 

  • Louis, E., Guinea F. and Flores, F., 1986, The fractal nature of fracture, Fractals In Physics (eds. L. Pietronero and E. Tossati), Elsevier Science 177.

    Google Scholar 

  • Lovejoy, S., 1982, Area-perimeter pelation for pain and cloud areas, Science, 216 185.

    CrossRef  ADS  Google Scholar 

  • Mandelbrot, B.B., 1977, The Fractal Geometry of Nature, W.H. Freeman and Company, (New York).

    Google Scholar 

  • Matsushita, M. and Fukiwara. H., 1993, Fractal growth and morphological change in bacterial colony formation, In Growth Patterns in Physical Sciences and Biology, (eds. J.M. Garcia-Ruiz, E. louis, P. Meaken and L.M. Sander) Plenum Press (New York).

    Google Scholar 

  • Morse, D.R., Larson, J.H., Dodson, M.M., and Williamson, M.H., 1985, Fractal dimension of anthropod body lengths, Nature, 315 731–733.

    CrossRef  ADS  Google Scholar 

  • Niemeyer, L., Pietronero, L., and Wiesmann, H.J., 1984, Fractal dimension of dielectric breakdown, Physical Review Letters, 52 1033.

    CrossRef  ADS  MathSciNet  Google Scholar 

  • Nittmann, J., and Stanley, H.E., 1987, Non-deterministic approach to anisotropic growth patterns with continuously tunable morphology: the fractal properties of some real snowflakes, Journal of Physics A 20, L1185.

    CrossRef  ADS  MathSciNet  Google Scholar 

  • Pentland, A. P., 1984, Fractal-based description of natural scenes, IEEE Pattern Analysis and Machine Intelligence, PAMI-6, 661–674.

    CrossRef  Google Scholar 

  • Pickover, C., 1995, Keys to Infinity, Wiley (New York) 206.

    Google Scholar 

  • Potter, J., 1985, To a Violent Grave: An Oral Biography of Jackson Pollock, G.P. Putman and Sons (New York).

    Google Scholar 

  • Richards, R., 2001, A new aesthetic for environmental awareness: Chaos theory, the beauty of nature, and our broader humanistic identity, Journal of Humanistic Psychology, 41 59–95.

    CrossRef  Google Scholar 

  • Rogowitz, R.E., and Voss, R.F., 1990, Shape perception and low dimensional fractal boundary contours, Proceedings of the conference on Human vision: Methods, Models and Applications, S.P.I.E., 1249, 387.

    Google Scholar 

  • Skjeltorp. P., 1988, Fracture Experiments on Monolayers of Microspheres, Random Fluctuations and Pattern Growth (ed. H.E. Stanley and N. Ostrowsky) Kluwer Academic (Dordrecht).

    Google Scholar 

  • Spehar, B., Clifford, C., Newell, B. and Taylor, R.P., 2002, Universal aesthetic of fractals, submitted to Leonardo.

    Google Scholar 

  • Taylor, R.P., 2001, Architect reaches for the clouds, Nature, 410, 18.

    CrossRef  ADS  Google Scholar 

  • Taylor, R.P., 2002, Spotlight on a visual language, Nature, 415, 961.

    CrossRef  ADS  Google Scholar 

  • Taylor, R.P., Micolich, A.P., and Jonas, D., 1999, Fractal analysis of Pollock’s drip paintings Nature, 399, 422.

    CrossRef  ADS  Google Scholar 

  • Taylor, R.P., Micolich, A.P., and Jonas, D, 1999, Fractal expressionism, Physics World, 12, 25–28.

    Google Scholar 

  • Taylor, R.P., Micolich, A.P., and Jonas, D., 2002, The construction of Pollock’s fractal drip paintings, to be published in Leonardo, MIT press.

    Google Scholar 

  • Taylor, R.P., Micolich, A.P., and Jonas, D., 2002, Using nature’s geometry to authenticate art, to be published in Scientific American.

    Google Scholar 

  • Varnedoe, K., and Karmel, K., 1998, Jackson Pollock, Abrams (New York).

    Google Scholar 

  • Werner, B.T., 1999, Complexity in natural landform patterns, Science, 102 284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 NECSI Cambridge, Massachusetts

About this paper

Cite this paper

Taylor, R.P., Spehar, B., Clifford, C.W.G., Newell, B.R. (2008). The Visual Complexity of Pollock’s Dripped Fractals. In: Minai, A.A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73849-7_20

Download citation