Skip to main content

Skeleton Surface Generation from Volumetric Models of Thin Plate Structures for Industrial Applications

  • Conference paper
Mathematics of Surfaces XII (Mathematics of Surfaces 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4647))

Included in the following conference series:

Abstract

Computed Tomography (CT) is a powerful non-destructive measurement technology to generate cross-sectional X-ray images of objects, from which three-dimensional volumetric models can be constructed. In this study, we focus on industrial applications for X-ray CT in the analysis of thin plate structures, and propose in particular a method to generate sufficiently accurate skeleton meshes from a volumetric model of a thin plate structure. We use a geodesic-based skeletonization algorithm to extract skeleton cells, which can then be contoured to generate a skeleton surface. Since the thin plate structure has junctions, the skeleton surface is non-manifold around these areas. Because of this, the Marching Cubes algorithm is extended to enable handling of multiple labels (signs) to generate non-manifold meshes. The generated mesh is optimized to pass through the mid of the plate by interpolating mapping. Some experimental results for industrial samples are shown using our implemented prototype system, and it is proven that the accuracy of the generated mesh is sufficient for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suzuki, H.: Convergence engineering based on X-ray CT scanning technologies. In: Proceedings of JSME Digital Engineering Workshop, pp. 74–77 (2005)

    Google Scholar 

  2. Fujimori, T., Suzuki, H., Kobayashi, Y., Kase, K.: Contouring medial surface of thin plate structure using local marching cubes. Journal of Computing and Information Science in Engineering (Short Paper) 5(2), 111–115 (2005)

    Article  Google Scholar 

  3. Fujimori, T., Suzuki, H.: Medial surface extraction and extension from CT data. In: Proceedings of the 13th Pacific Conference on Computer Graphics and Applications (short paper) (2005)

    Google Scholar 

  4. Fujimori, T., Suzuki, H.: Surface extraction from multi-material CT data. In: Proceedings of CAD/Graphics 2005 (2005)

    Google Scholar 

  5. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169. ACM Press, New York (1987)

    Chapter  Google Scholar 

  6. O’ Rourke, J.: Computational geometry in C, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Bloomenthal, J.: Polygonization of implicit surfaces. Computer Aided Geometric Design 5(4), 341–355 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Culver, T., Keyser, J., Manocha, D.: Exact computation of the medial axis of a polyhedron. Computer Aided Geometric Design 21(1), 65–98 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Etzion, M., Rappoport, A.: Computing Voronoi skeletons of a 3D polyhedron by space subdivision. Technical report (1999)

    Google Scholar 

  10. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric datastructure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  11. Reddy, J.M., Turkiyyah, G.M.: Computation of 3D skeletons using a generalized Delaunay triangulation technique. Computer Aided Design 27(9), 677–694 (1995)

    Article  MATH  Google Scholar 

  12. Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Proceedings of Solid Modeling 2001, pp. 249–260 (2001)

    Google Scholar 

  13. Attali, D., Lachaud, J.O.: Delaunay conforming iso-surface, skeleton extraction and noise removal. Comput. Geom.: Theory Appl. 19(2–3), 175–189 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. In: Comput. Vision Image Understanding, pp. 261–273 (1997)

    Google Scholar 

  15. Brandt, J., Algazi, V.: Continuous skeleton computation by Voronoi diagram. Comput. Vision Graphics Image Process 55, 329–338 (1992)

    MATH  Google Scholar 

  16. Sheehy, D., Armstrong, C., Robinson, D.: Shape description by medial axis construction. IEEE Trans. Vis. Comput. Graph. 2(1), 62–72 (1996)

    Article  Google Scholar 

  17. Turkiyyah, G., Storti, D., Ganter, M., Chen, H., Vimawala, M.: Contouring medial surface of thin plate structure using local marching cubes. Computer Aided Design 29(1), 5–19 (1997)

    Article  Google Scholar 

  18. Dey, T., Zhao, W.: Approximate medial axis as a Voronoi subcomplex. In: 7th ACM Symposium on Solid Modeling Applications, pp. 356–366. ACM Press, New York (2002)

    Google Scholar 

  19. Dey, T., Zhao, W.: Approximating the medial axis from the Voronoi diagram with a convergence guarantee. Algorithmica 38(1), 179–200 (2003)

    Article  MathSciNet  Google Scholar 

  20. Yoshizawa, S., Belyaev, A.G., Seidel, H.P.: Free-form skeleton-driven mesh deformations. In: SM 2003. Proceedings of the eighth ACM symposium on Solid modeling and applications, pp. 247–253 (2003)

    Google Scholar 

  21. ASTM: E 1441-00 Standard Guide for Computed Tomography (CT) Imaging. ASTM (2000)

    Google Scholar 

  22. Elvins, T.T.: ACM SIGGRAPH 94, Course Notes, Introduction to Volume Visualization: Imaging Multi-dimensional Scientific Data (1994)

    Google Scholar 

  23. Lachaud, J.O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graphical Models and Image Processing 62, 129–164 (2000)

    Google Scholar 

  24. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3), 357–393 (1989)

    Article  Google Scholar 

  25. Lohmann, G.: Volumetric Image Analysis. John Wiley & Sons, Ltd, West Sussex (1998)

    MATH  Google Scholar 

  26. Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graphical Models and Image Processing 56(6), 462–478 (1994)

    Article  Google Scholar 

  27. Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Proceedings of Geometric Modeling and Processing 20, 235–247 (2006)

    Article  Google Scholar 

  28. Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. SPIE Press (2003)

    Google Scholar 

  29. Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recogn. Lett. 16(9), 979–986 (1995)

    Article  Google Scholar 

  30. Lohou, C., Bertrand, G.: A new 3D 6-subiteration thinning algorithm based on p-simple points. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 102–113. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  31. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-D pictures. Computer Graphics and Image Processing 17(4), 315–331 (1981)

    Article  Google Scholar 

  32. Manzanera, A., Bernard, T.M., Preteux, F.J., Longuet, B.: Medial faces from a concise 3D thinning algorithm. ICCV 1, 337–343 (1999)

    Google Scholar 

  33. Cuisenaire, O.: Distance Transformations: Fast Algorithms and Applications to Medical Image Processing. PhD thesis, Université cotholique de Louvain, Laboratoire de Telecommunications et Teledetection (1999)

    Google Scholar 

  34. Jones, M., Satherley, R.: Shape representation using space filled sub-voxel distance fields. In: International Conference on Shape Modeling and Applications, pp. 316–325 (2001)

    Google Scholar 

  35. Gagvani, N.: Paramter-controlled volume thinning. Graphical Models and Image Processing 61(3), 149–164 (1999)

    Article  Google Scholar 

  36. Malandain, G., Fernandez-Vidal, S.: Euclidean skeletons. Image and Vision Computing 16(10), 317–327 (1998)

    Article  Google Scholar 

  37. da F. Costa, L.: Multidimensional scale space shape analysis. In: IWSNHC3DI 1999, Santorini, Greece, pp. 214–217 (1999)

    Google Scholar 

  38. Prohaska, S., Hege, H.C.: Fast visualization of plane-like structures in voxel data. In: Proceedings of the conference on Visualization 2002, pp. 29–36. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  39. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Polthier, K., Sheffer, A. (eds.) Eurographics Symposium on Geometry Processing, pp. 143–152 (2006)

    Google Scholar 

  40. Nielson, G.M., Hamann, B.: The asymptotic decider: resolving the ambiguity in marching cubes. In: Proceedings of the 2nd conference on Visualization 1991, pp. 83–91. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  41. Hege, H.C., Seebass, M., Stalling, D., Zöckler, M.: A generalized marching cubes algorithm based on non-binary classifications. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Belin (1997)

    Google Scholar 

  42. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of Hermite data. ACM Transactions on Graphics 21(3), 339–346 (2002)

    Article  Google Scholar 

  43. Eberly, D.: Level set extraction from gridded 2D and 3D data (Magic Software, Inc.), URL: http://www.magic-software.com

  44. Eberly, D.: Triangulation by ear clipping (Magic Software, Inc.), URL: http://www.magic-software.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralph Martin Malcolm Sabin Joab Winkler

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, H., Fujimori, T., Michikawa, T., Miwata, Y., Sadaoka, N. (2007). Skeleton Surface Generation from Volumetric Models of Thin Plate Structures for Industrial Applications. In: Martin, R., Sabin, M., Winkler, J. (eds) Mathematics of Surfaces XII. Mathematics of Surfaces 2007. Lecture Notes in Computer Science, vol 4647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73843-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73843-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73842-8

  • Online ISBN: 978-3-540-73843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics