Advertisement

New Aspects of Estimating Electrical Participating Volume of the Thorax for Transthoracic Impedance Cardiography

  • J. Fortin
  • R. Grüllenberger
  • W. Habenbacher
  • A. Hacker
  • A. Heller
  • H. Passath
  • D. Flotzinger
  • P. Wach
Part of the IFMBE Proceedings book series (IFMBE, volume 17)

Abstract

The paper gives an overview of historic impedance cardiography in order to describe the course of evolution as well as the shortcomings of previous calculations. One goal of all impedance cardiography (ICG) formulas is the correct estimation of electrical participating thoracic volume. A new method – continuous non-invasive cardiac output (CNCO) – is disclosed using an improved estimate of thoracic volume. The formulas are implemented in software and validated for CE and FDA certification as part of the Task Force® Monitor and other CNCO patient monitoring products of CNSystems AG, Graz, Austria.

Keywords

Impedance Cardiography Left Ventricular Ejection Time Blood Resistivity Total Peripheral Resistance Index Thoracic Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright R.F., Gilbert J. (2000) Clinical Decision Making in Patients with Congestive Heart Failure: The Role of Thoracic Electrical Bioimpedance. Congest Heart Fail 6(2):27–31CrossRefGoogle Scholar
  2. 2.
    Silver M, Cianci P, Brennan S, Longeran-Thomas H, Ahmad F (2004) Evaluation of impedance cardiography as an alternative to pulmonary artery catherization in critically ill patients. Congest Heart Fail 10(2 suppl 2):17–21CrossRefGoogle Scholar
  3. 3.
    Summers R, Parrott C, Quale C, Lewis D (2004) Use of impedance cardiography in non-invasive hemodynamics to aid decision making in the initiation and titration of neurohormonal agents. Congest Heart Fail 10(2 suppl 2):28–31CrossRefGoogle Scholar
  4. 4.
    Strobeck J.E., Silver M., Ventura H. (2000) Impedance Cardiography: Noninvasive Measurement of Cardiac Stroke Volume and Thoracic Fluid Content. Congestive Heart Failure 6(2):3–6CrossRefGoogle Scholar
  5. 5.
    Drazner M.H., Thompson B., Rosenberg P.B., Kaiser P.A., Boehrer J.D., Baldwin B.J., Dries D.L., Yancy C.W.: Comparison of Impedance Cardiography with Inhasive Hemodynamic Measurements in Patients with Heart Failure Secondary to Ischemic or Nonischemic Cardiomyopathy, The American Journal of Cardiology, Vol. 89:15, pp. 993–995.Google Scholar
  6. 6.
    De Maria A.N., Raisinghani A.: Comparative Overview of Cardiac Output Measurement Methods: Has Impedance Cardiography Come of Age? Congestive Heart Failure, Vol. 6, No. 2, pp. 7–18.Google Scholar
  7. 7.
    Fortin J., Gratze G., Wach P., Skrabal F. (1997) Automated non-invasive assessment of cardiovascular function, spectral analysis and baroreceptor sensitivity for the diagnosis of syncopes. World Congress on Medical Physics and Biomedical Engineering. Med & Biol Eng & Comput 35(Supplement I):466Google Scholar
  8. 8.
    Gratze G., Fortin J., Holler A., Grasenick K., Pfurtscheller G., Wach P., Kotanko P., Skrabal F. (1998) A software package for non-invasive, realtime beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function. Comp in Biol & Medicine 28:121–142CrossRefGoogle Scholar
  9. 9.
    Fortin J., Habenbacher W., Gruellenberger R., Wach P., Skrabal F.: Real-time Monitor for hemodynamic beat-to-beat parameters and power spectra analysis of the biosignals. Proc. of the 20th Annual International Conference of the IEEE Eng in Medicine and Biology Society, 20, 1 (1998)Google Scholar
  10. 10.
    Fortin J., Marte W., Grüllenberger R., Hacker A., Habenbacher W., Heller A., Wagner Ch., Wach P., Skrabal F. (2006) Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Computers in Biology and Medicine 36:941-957CrossRefGoogle Scholar
  11. 11.
    Fortin J., Habenbacher W., Heller A., Hacker A., Grüllenberger R., Innerhofer J., Passath H., Wagner Ch., Haitchi G., Flotzinger D., Pacher R., Wach P. (2006) Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement, Computers in Biology and Medicine 36:1185-1203CrossRefGoogle Scholar
  12. 12.
    Atzler E., Lehmann G. (1932) Über ein neues Verfahren zur Darstellung der Herztätigkeit (Dielektrographie). Arbeitsphysiologie (Zeitschrift für die Physiologie des Menschen bei Arbeit und Sport) 5(6):636–680Google Scholar
  13. 13.
    Holzer W, Polzer K, Marko A (1946) RKG. Rheography. Ein Verfahren der Kreislaufforschung und Kreislaufdiagnostik. Wilhelm Maudrich, Vienna Google Scholar
  14. 14.
    Nyboer J. (1950) Electrical impedance plethysmography. A physical and physiologic approach to peripheral vascular study. Circulation 2:811–21Google Scholar
  15. 15.
    Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerospace Medicine 37:1208–12Google Scholar
  16. 16.
    Kubicek W.G., Kottke F.J., Ramos M.U., Patterson R.P., Witsoe D.A., Labree J.W., Remole W., Layman T.E., Schoening H., Garamela J.T. (1974) The Minnesota Impedance Cardiograph - Theory and Applications. Biomed Eng 9:410–6Google Scholar
  17. 17.
    Lamberts R, Visser KR, Zijlstra WG (1984) Impedance Cardiography. Van Gorcum, Assen, the Netherlands Google Scholar
  18. 18.
    Mohapatra SN, Costeloe KL, Hill DW (1977) Blood resistivity and its implications for the calculation of cardiac output by the thoracic electrical impedance technique. Intensive Care Med 3:63CrossRefGoogle Scholar
  19. 19.
    Quail AW, Traugott FM, Porges WL, White SW (1981) Thoracic resistivity for stroke volume calculation in impedance cardiography. J Appl Physiol 50:191Google Scholar
  20. 20.
    Sramek B.B.: Non-invasive measurement of cardiac output by means of electrical impedance. Proceedings of the 5th International Conference of Electrical Bioimpedance. Tokyo, Japan; p.91 (1981)Google Scholar
  21. 21.
    Sramek B.B., Rose D.M., Miyamoto A.: Stroke volume equation with a linear base impedance model and its accuracy, as compared to thermodilution and magnetic flow meter techniques in humans and animals. Proceeding of the 6th International Conference of Electrical Bioimpedance. Zadar, Yugoslavia; p.38 (1983)Google Scholar
  22. 22.
    Bernstein D.B. (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–9Google Scholar
  23. 23.
    Bernstein D.B. (1986) Continuous non-invasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 14:898–901CrossRefGoogle Scholar
  24. 24.
    National Heart, Lung and Blood Institute: Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. June 17 1998Google Scholar
  25. 25.
    WHO: Preventing and Managing the Global Epidemic of Obesity. Report of the World Health Organization Consultation of Obesity. WHO, Geneva, June 1997Google Scholar
  26. 26.
    Schmidt R., Thews G.: Physiologie des Menschen, pp.547–548 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. Fortin
    • 1
  • R. Grüllenberger
    • 1
  • W. Habenbacher
    • 1
  • A. Hacker
    • 1
  • A. Heller
    • 1
  • H. Passath
    • 1
  • D. Flotzinger
    • 1
  • P. Wach
    • 1
  1. 1.Institute of Medical EngineeringGrazAustria

Personalised recommendations