Advertisement

Poultry

  • Michael N. Romanov
  • Alexei A. Sazanov
  • Irina Moiseyeva
  • Aleksandr F. Smirnov
Part of the Genome Mapping and Genomics in Animals book series (MAPPANIMAL, volume 3)

From the time of initial domestication of wild birds, poultry have served humans as a source of food and a subject of cultural use, similar to other livestock species. The availability of genomic resources ranges from a fully annotated whole genome sequence for the chicken (Gallus gallus) to highly developed linkage maps in Japanese quail (Coturnix japonica), to large insert libraries and at least some species-specific markers in the turkey (Meleagris gallopavo), domestic duck (Anas platyrhynchos), zebra finch (Taeniopygia guttata), brown kiwi (Apteryx australis), and California condor (Gymnogyps californianus). Genomic resources are very limited in other species of birds. The annotated chicken genome sequence will pave the way for improving traits of economic importance in the chicken, and will serve as a reference sequence in comparative mapping of other domesticated and wild bird species.

Keywords

Zebra Finch Japanese Quail Chicken Genome Domestic Fowl Guinea Fowl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdrakhmanov I, Lodygin D, Geroth P, Arakawa H, Law A, Plachy J, Korn B, Buerstedde JM (2000) A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Res 10:2062–2069PubMedGoogle Scholar
  2. Abozin II (1885) Chicken breeding: detailed description of various chicken breeds, with the recommendations of care of them, breed improvement by crossbreeding and selection of breeders, pt 2. Moscow, RussiaGoogle Scholar
  3. Aerts JA, Veenendaal T, van der Poel JJ, Crooijmans RPMA, Groenen MAM (2005) Chromosomal assignment of chicken clone contigs by extending the consensus linkage map. Anim Genet 36:216–222PubMedGoogle Scholar
  4. Afrakhte M, Schultheiss TM (2004) Construction and analysis of a subtracted library and microarray of cDNAs expressed specifically in chicken heart progenitor cells. Dev Dyn 230:290–298PubMedGoogle Scholar
  5. Akishinonomiya F, Miyake T, Sumi S, Takada M, Ohno S, Kondo N (1994) One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci USA 91:12505–12509Google Scholar
  6. Akishinonomiya F, Miyake T, Takada M, Shingu R, Endo T, Gojobori T, Kondo N, Ohno S (1996) Monophyletic origin and unique dispersal patterns of domestic fowls. Proc Natl Acad Sci USA 93:6792–6795Google Scholar
  7. Altukhov Y (ed) (2004) Dynamics of population gene pools under anthropogenic pressures. Nauka, Moscow, RussiaGoogle Scholar
  8. Ambady S, Cheng HH, Ponce De Leon FA (2002) Development and mapping of microsatellite markers derived from chicken chromosome-specific libraries. Poult Sci 81:1644–1646PubMedGoogle Scholar
  9. Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138PubMedGoogle Scholar
  10. Andreozzi L, Federico C, Motta S, Saccone S, Sazanova AL, Sazanov AA, Smirnov AF, Galkina SA, Lukina NA, Rodi-onov AV, Carels N, Bernardi G (2001) Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chrom Res 9:521–532PubMedGoogle Scholar
  11. Arnold A P, Clayton D (2004) Proposal for construction of a BAC library of the genome of the zebra finch (Taeniopygia guttata). National Human Genome Research Institute, USA. http://www.genome.gov/Pages/Research/Sequencing/BACLibrary/zebraFinch.pdf (accessed August 20, 2008)
  12. Backström N, Brandström M, Gustafsson L, Qvarnström A, Cheng H, Ellegren H (2006) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174:377–386PubMedGoogle Scholar
  13. Baker CMA (1964) Molecular genetics of avian proteins. III. The egg proteins of an isolated population of Jungle Fowl, Gallus gallus L. Comp Biochem Physiol 12:389–403PubMedGoogle Scholar
  14. Baker CMA (1968) Molecular genetics of avian proteins. IX. Interspecific and intraspecific variation of egg white proteins of genus Gallus. Genetics 58:211–226PubMedGoogle Scholar
  15. Baker CMA, Manwell C (1972) Molecular genetics of avian proteins. XI. Egg proteins of Gallus gallus, G. sonnerati and hybrids. Anim Blood Groups Biochem Genet 3:101–107Google Scholar
  16. Baker CMA, Manwell C, Jayaprakash N, Francis N (1971) Molecular genetics of avian proteins. X. Egg white protein polymorphism of indigenous Indian chickens. Comp Biochem Physiol B Comp Biochem 40:147–153Google Scholar
  17. Baratti M, Alberti A, Groenen M, Veenendaal T, Fulgheri FD (2001) Polymorphic microsatellites developed by cross-species amplifications in common pheasant breeds. Anim Genet 32:222–225PubMedGoogle Scholar
  18. Barloy JJ (1978) Man and Animals. 100 Centuries of Friendship. Gordon and Cremonesi, London, UKGoogle Scholar
  19. Bateson W (1909) Mendel's Principles of Heredity. Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Bateson W, Punnett RC (1911) The inheritance of peculiar pigmentation of the Silky fowl. J Genet 1:185–203Google Scholar
  21. Bateson W, Saunders ER (1902) Experimental studies in the physiology of heredity. Rep Evol Comm R Soc I:1–160Google Scholar
  22. Beaumont C, Roussot O, Feve K, Vignoles F, Leroux S, Pitel F, Faure JM, Mills AD, Guémené D, Sellier N, Mignon- Grasteau S, Le Roy P, Vignal A (2005) A genome scan with AFLP™markers to detect fearfulness-related QTL in Japanese quail. Anim Genet 36:401–407PubMedGoogle Scholar
  23. Beebe W (1918–1922) A Monograph of Pheasants, vols I-IV. H.F. and G. Witherby, London, UKGoogle Scholar
  24. Bell DD, Weaver WD Jr (2002) Commercial Chicken Meat and Egg Production, 5th edn. Kluwer, Norwell, USAGoogle Scholar
  25. Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (˜100 Mb) and Drosophila (˜175 Mb) using flow cytometry show genome size in Ara-bidopsis to be ˜157 Mb and thus ˜25% larger than the Arabidopsis genome initiative estimate of ˜125 Mb. Ann Bot (Lond) 91:547–557Google Scholar
  26. Bennett RM, Ijpelaar ACE (2003) Economics of Livestock Diseases. Department of Agricultural and Food Economics, University of Reading, Reading, UK. http://www.apd.rdg.ac.uk/AgEcon/livestockdisease/index.htm (accessed August 20, 2008)
  27. Bermudez-Humaran LG, Garcia-Garcia A, Leal-Garza CH, Riojas-Valdes VM, Jaramillo-Rangel G, Montes-de-Oca-Luna R (2002) Molecular sexing of monomorphic endangered Ara birds. J Exp Zoo 292:677–680Google Scholar
  28. Bitgood JJ, Somes RG Jr (1993) Gene map of the chicken ( Gallus gallus or G. domesticus). In: O'Brien S (ed) Genetic Maps, 6th edn. Cold Spring Harbor Lab Press, Cold Spring Harbor, USA, pp 4332–4342Google Scholar
  29. Bliss TW, Dohms JE, Emara MG, Keeler CL Jr (2005) Gene expression profiling of avian macrophage activation. Vet Immunol Immunopathol 105:289–299PubMedGoogle Scholar
  30. Bloom SE, Delany ME, Muscarella DE (1993) Constant and variable features of avian chromosomes. In: Etches RJ, Verrinder Gibbins AM (eds) Manipulation of the Avian Genome. CRC Press, Boca Raton, USA, pp 39–59Google Scholar
  31. Boardman PE, Sanz-Ezquerro J, Overton IM, Burt DW, Bosch E, Fong WT, Tickle C, Brown WR, Wilson SA, Hubbard SJ(2002) A comprehensive collection of chicken cDNAs. Curr Biol 12:1965–1969PubMedGoogle Scholar
  32. Bourneuf E, Herault F, Chicault C, Carre W, Assaf S, Monnier A, Mottier S, Lagarrigue S, Douaire M, Mosser J, Diot C (2006) Microarray analysis of differential gene expression in the liver of lean and fat chickens. Gene 372:162–170PubMedGoogle Scholar
  33. Brisbin IL (1997) Concerns for the genetic integrity and conservation status of the red junglefowl. SPPA Bull 2:1–2Google Scholar
  34. Brothwell D, Brothwell P (1998) Food in Antiquity: A Survey of the Diet of Early Peoples. expanded edn. Johns Hopkins University Press, Baltimore, USAGoogle Scholar
  35. Brown E (1906) Races of Domestic Poultry. Edward Arnold, London, UKGoogle Scholar
  36. Brown E (1929) Poultry Breeding and Production, vols I and II. Ernst Benn Ltd, London, UKGoogle Scholar
  37. Brown WR, Hubbard SJ, Tickle C, Wilson SA (2003) The chicken as a model for large-scale analysis of vertebrate gene function. Nat Rev Genet 4:87–98PubMedGoogle Scholar
  38. Buitenhuis AJ, Rodenburg TB, Siwek M, Cornelissen SJB, Nieuwland MGB, Crooijmans RPMA, Groenen MAM, Koene P, Bovenhuis H, van der Poel JJ (2003) Identification of quantitative trait loci for receiving pecks in young and adult laying hens. Poult Sci 82:1661–1667PubMedGoogle Scholar
  39. Buitkamp J, Ewald D, Schalkwyk L, Weiher M, Masabanda J, Sazanov A, Lehrach H, Fries R (1998) Construction and characterisation of a gridded chicken cosmid library with four-fold genomic coverage. Anim Genet 29:295–301PubMedGoogle Scholar
  40. Bumstead N (1998) Genomic mapping of resistance to Marek's disease. Avian Pathol 27:S78–S81Google Scholar
  41. Bumstead N, Palyga J (1992) A preliminary linkage map of the chicken genome. Genomics 13:690–697PubMedGoogle Scholar
  42. Burnside J, Neiman P, Tang J, Basom R, Talbot R, Aronszajn M, Burt D, Delrow J (2005) Development of a cDNA array for chicken gene expression analysis. BMC Genomics 6:13PubMedGoogle Scholar
  43. Burt DW (1999) Chick. In: Wood R (ed) Genetic Nomenclature Guide. Elsevier, West Sussex, UK, Trends Genet 15(Nov Suppl):S34–S36Google Scholar
  44. Burt DW (2002) Origin and evolution of avian microchromo-somes. Cytogenet Genome Res 96:97–112PubMedGoogle Scholar
  45. Burt DW (2005) Chicken genome: current status and future opportunities. Genom Res 15:1692–1698Google Scholar
  46. Burt DW, Pourquié O (2003) Chicken genome — science nug-gets to come soon. Science 300:1669PubMedGoogle Scholar
  47. Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, Morrice DR, Paton IR, Smith J, Windsor D, Sazanov A, Fries R, Waddington D (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402:411–413PubMedGoogle Scholar
  48. Carlborg O, Hocking PM, Burt DW, Haley CS (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet Res 83:197–209PubMedGoogle Scholar
  49. Carter GF (1971) Pre-Columbian chickens in America. In: Riley CL, Kelly JC, Pennington CW, Rands RL (eds) Man Across the Sea. Problems of Pre-Columbian Contacts. University of Texas Press, Austin, USA, pp 178–218Google Scholar
  50. Carter H, Mace AC (1923–1933) The Tomb of Tut-ankh-amen Discovered by the Late Earl of Carnarvon and Howard Carter, 3 vols. Cassell, London, UKGoogle Scholar
  51. Cassar G, Mohammed M, John TM, Gazdzinski P, Etches RJ (1998) Differentiating between parthenogenetic and “positive development” embryos in turkeys by molecular sex-ing. Poult Sci 77:1463–1468PubMedGoogle Scholar
  52. Chen X, Agate RJ, Itoh Y, Arnold AP (2005) Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci USA 102:7730–7735PubMedGoogle Scholar
  53. Cheng HH, Levin I, Vallejo RL, Khatib H, Dodgson JB, Crit-tenden LB, Hillel J (1995) Development of a genetic map of the chicken with markers of high utility. Poult Sci 74:1855–1874PubMedGoogle Scholar
  54. Clayton DF (2004) Songbird genomics: methods, mechanisms, opportunities, and pitfalls. Ann NY Acad Sci 1016:45–60PubMedGoogle Scholar
  55. Clayton D, Arnold A, Warren W, Dodgson J (2005) Proposal for construction of a physical map of the genome of the zebra finch (Taeniopygia guttata). University of California, Los Angeles, USA. http://www.physci.ucla.edu/html/ images/Zebra_finch_genome_white_paper.pdf (accessed August 20, 2008)Google Scholar
  56. Cogburn LA, Wang X, Carre W, Rejto L, Porter TE, Aggrey SE, Simon J (2003) Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult Sci 82:939–951PubMedGoogle Scholar
  57. Cole LJ (1930) A triple allelomorph in doves and its interspecific transfer. Anat Rec 47:389 (Aviculture 2:27–30)Google Scholar
  58. Crawford RD (1990) Poultry Breeding and Genetics. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  59. Crawford RD (1992) A global review of the genetic resources of poultry. In: Management of Global Animal Genetic Resources. FAO Animal Production and Health Paper, No 104, Rome, Italy, pp 205–214Google Scholar
  60. Crawford RD (1995) Origin, history, and distribution of commercial poultry. In: Hunton P (ed) Poultry Production. Elsevier, Amsterdam, The Netherlands, pp 1–20Google Scholar
  61. Crittenden LB, Provencher L, Santangelo L, Levin I, Abplanalp H, Briles RW, Briles WE, Dodgson JB (1993) Characterization of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome. Poult Sci 72:334–348Google Scholar
  62. Crooijmans RPMA, Vrebalov J, Dijkhof RJM, van der Poel JJ, Groenen MAM (2000) Two-dimensional screening of the Wageningen chicken BAC library. Mamm Genom 11:360–363Google Scholar
  63. Darwin C (1868) The Variation of Animals and Plants under Domestication. John Murray, London, UK, pp 273–335Google Scholar
  64. Davenport CB (1911) Another case of sex-limited heredity in poultry. Proc Soc Exp Biol Med 9:19–20Google Scholar
  65. Davenport CB (1912) Sex-limited inheritance in poultry. J Exp Zool 13:1–26Google Scholar
  66. Dawe Y, Kuhnlein U, Zadworny D, Gavora J (1988) DNA fingerprinting: a tool for assessing parentship, strain relationship and genetic variability in poultry. Proc 18th Worlds Poult Congr, Nagoya, Japan, September 4–9, pp 507–508Google Scholar
  67. Dawson DA, Burke T, Hansson B, Pandhal J, Hale MC, Hinten GN, Slate J (2006) A predicted microsatellite map of the passerine genome based on chicken-passerine sequence similarity. Mol Ecol 15:1299–1320PubMedGoogle Scholar
  68. D'Costa S, Petitte JN (1998) Sex identification of turkey embryos using a multiplex polymerase chain reaction. Poult Sci 77:718–721PubMedGoogle Scholar
  69. de Boer LEM (1980) Do the chromosomes of the kiwi provide evidence for a monophyletic origin of the ratites? Nature 287:84–85PubMedGoogle Scholar
  70. Deeb N, Lamont SJ (2003) Use of a novel outbred by inbred F1 cross to detect genetic markers for growth. Anim Genet 34:2051–212Google Scholar
  71. de Koning D-J, Haley CS, Windsor D, Hocking PM, Griffin H, Morris A, Vincent J, Burt DW (2004) Segregation of QTL for production traits in commercial meat-type chickens. Genet Res 83:211–220PubMedGoogle Scholar
  72. Delacour J (1977) The Pheasants of the World, 2nd edn. Spur, Hindhead, Surrey, UK pp 119–136Google Scholar
  73. del Hoyo J, Elliott A, Sargatal J (eds) (1992–1996) Handbook of the Birds of the World, vols 1–3. Lynx Edicions, Barcelona, SpainGoogle Scholar
  74. Dembeck H (1965) Animals and Men. The American Museum of Natural History. The Natural History Press, Garden City USAGoogle Scholar
  75. Derjusheva S, Kurganova A, Habermann F, Gaginskaya E (2004) High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chrom Res 12:715–723PubMedGoogle Scholar
  76. Dixon ES (1848) Ornamental and Domestic Poultry: Their History and Management, 1st edn. Gardener's Chronicle, London, UKGoogle Scholar
  77. Dodgson JB (2003) Chicken genome sequence: a centennial gift to poultry genetics. Cytogenet Genome Res 102:291–296PubMedGoogle Scholar
  78. Dodgson JB, Romanov MN (2004) Use of chicken models for the analysis of human disease. In: Dracopoli NC, Haines JL, Korf BR, Moir DT, Morton CC, Seidman CE, Seidman JG, Smith DR (eds) Current Protocols in Human Genetics. Wiley, Hoboken, USA, Unit 15.5, pp 15.5.1–15.5.11Google Scholar
  79. Dunn IC, Sharp PJ, Paton IR, Burt DW (1999) Mapping of the gene responsible for henny feathering (CYP19/aromatase) to chicken chromosome E29C09W09. Proc Poult Genet Symp, Mariensee, Germany, October 6–8, 1999, p 114Google Scholar
  80. Dunn LC (1928) The genetics of the domestic fowl. J Hered 19:511–519Google Scholar
  81. Dunn LC (1929) The genetics of the domestic fowl: Memoirs of the Anikowo Genetical Station, 1926. II. The genetics of leg feathering. J Hered 20:111–118Google Scholar
  82. Dunn LC, Jull MA (1927) On the inheritance of some characteristics of the Silky fowl. J Genet 19:27–63Google Scholar
  83. Dunn LC, Landauer W (1930) Further data on a case of auto-somal linkage in the domestic fowl. J Genet 22:95–101Google Scholar
  84. Dunnington EA, Stallard LC, Hillel J, Siegel PB (1994) Genetic diversity among commercial chicken populations estimated from DNA fingerprints. Poult Sci 73:1218–1225PubMedGoogle Scholar
  85. Durham FM, Marryat DCE (1908) Note on the inheritance of sex in canaries. Rep Evol Comm R Soc IV:57–60Google Scholar
  86. Edwards S V, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250PubMedGoogle Scholar
  87. El Bassam N (1998) Sustainable development in agriculture – global key issues. Landbauforsch Völkenrode 48:1–11Google Scholar
  88. Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc Roy Soc Lond B Biol Sci 263:1635–1641Google Scholar
  89. Ellegren H, Fridolfsson AK (1997) Male-driven evolution of DNA sequences in birds. Nat Genet 17:182–184PubMedGoogle Scholar
  90. Ellestad LE, Carre W, Muchow M, Jenkins SA, Wang X, Cogburn LA, Porter TE (2006) Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays. Physiol Genom 25:414–425Google Scholar
  91. Erbil C, Niessing J (1984) Chromosomal arrangement of the duck α-globin genes and primary structure of the embryonic α-globin gene π. Gene 32:161–170PubMedGoogle Scholar
  92. Etches RJ, Hawes RO (1973) A summary of linkage relationships and a revised linkage map of the chicken. Can J Genet Cytol 15:553–570Google Scholar
  93. Ewins R (1995) Proto-Polynesian art? The cliff paintings of Vatulele, Fiji. J Polyn Soc 103:23–74Google Scholar
  94. FAO (1997–2004) Secondary Guidelines for Development of Na-tional Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. New Microsatellite Marker Sets — Recommendation of joint ISAG/FAO Standing Committee (to be presented at ISAG 2004). Initiative for Domestic Animal Diversity, FAO, Rome, ItalyGoogle Scholar
  95. FAOSTAT (2006) FAOSTAT Database Collections. Food and Agriculture Organization of the United Nations, Rome, Italy. http://faostat.fao.org/ (accessed August 25, 2006)
  96. Fillon V, Morisson M, Zoorob R, Auffray C, Douaire M, Gellin J, Vignal A (1998) Identification of 16 chicken micro-chromosomes by molecular markers using two-colour fluorescence in situ hybridization (FISH). Chrom Res 6:307–313PubMedGoogle Scholar
  97. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121Google Scholar
  98. Finsterbusch CA (1929) Cock Fighting all over the World. Grit and Steel, Gaffney, UKGoogle Scholar
  99. Goodale HD (1917) Crossing-over in the sex chromosome of the male fowl. Science 46:213PubMedGoogle Scholar
  100. Gregory TR (2006) Animal Genome Size Database. University of Guelph, Canada. http://www.genomesize.com/ (accessed August 25, 2006)
  101. Griffiths R, Korn RM (1997) A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus. Gene 197:225–229PubMedGoogle Scholar
  102. Griffiths R, Daan S, Dijkstra C (1996) Sex identification in birds using two CHD genes. Proc Roy Soc Lond B Biol Sci 263:1251–1256Google Scholar
  103. Griffiths R, Double MC, Orr K, Dawson RJ (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075PubMedGoogle Scholar
  104. Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genom Res 12:222–231Google Scholar
  105. Groenen MAM, Crooijmans RPMA, Veenendaal A, van Kaam JBCHM, Vereijken ALJ, van Arendonk JAM, van der Poel JJ (1997) QTL mapping in chicken using a three generation full sib family structure of an extreme broiler × broiler cross. Anim Biotechnol 8:41–46Google Scholar
  106. Groenen MAM, Crooijmans RPMA, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ (1998) A comprehensive micro-satellite linkage map of the chicken genome. Genomics 49:265–274PubMedGoogle Scholar
  107. Groenen MAM, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, Ponce de Leon FA, Soller M, Takahashi H, Vignal A (2000) A consensus linkage map of the chicken genome. Genom Res 10:137–147Google Scholar
  108. Guggenheim JA, Erichsen JT, Hocking PM, Wright NF, Black R (2002) Similar genetic susceptibility to form- deprivation myopia in three strains of chicken. Vision Res 42:2747–2756PubMedGoogle Scholar
  109. Guillier-Gensik Z, Bernheim A, Coullin P (1999) Generation of whole-chromosome painting probes specific to each chicken macrochromosomes. Cytogenet Cell Genet 87:282–285Google Scholar
  110. Gunnarsson U, Hellström AR, Tixier-Boichard M, Minvielle F, Bed'hom B, Ito S, Jensen P, Rattink A, Vereijken A, Andersson L (2007) Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:867–877PubMedGoogle Scholar
  111. Gunski RJ, Giannoni ML (1998) Nucleolar organizer regions and a new chromosome number for Rhea americana (Aves: Rheiformes). Genet Mol Biol 21:207–210Google Scholar
  112. Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003) Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species. Cytogenet Genome Res 103:173–184PubMedGoogle Scholar
  113. Haberfeld A, Dunnington EA, Siegel PB (1992) Genetic distances estimated from DNA fingerprints in crosses of White Plymouth Rock chickens. Anim Genet 23:165–173Google Scholar
  114. Habermann F, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangement of macro- and microchromosomes in chicken cells. Chrom Res 9:569–584PubMedGoogle Scholar
  115. Hagedoorn AL (1909) Mendelian inheritance of sex. Wilhelm Roux' Arch Entwicklungsmech Organ 28:1–34Google Scholar
  116. Hale ML, Petrie M, Wolff K (2004) Polymorphic microsat-ellite loci in peafowl (Pavo cristatus). Mol Ecol Notes 4:528–530Google Scholar
  117. Haldane JBS (1921) Linkage in poultry. Science 54:663PubMedGoogle Scholar
  118. Hanotte O, Burke T, Armour JA, Jeffreys AJ (1991) Hypervari-able minisatellite DNA sequences in the Indian peafowl Pavo cristatus. Genomics 9:587–597PubMedGoogle Scholar
  119. Hansson B, Åkesson M, Slate J, Pemberton JM (2005) Linkage mapping reveals sex-dimorphic map distances in a passerine bird. Proc Biol Sci 272:2289–2298PubMedGoogle Scholar
  120. Hertwig P (1933) Geschlechtsgebundene und autosomale Kop-pelungen bei Hühnern. Verh Dtsch Zool Ges 35:112–118Google Scholar
  121. Hillel J, Groenen MAM, Tixier-Boichard M, Korol AB, David L, Kirzhner VM, Burke T, Barre-Dirie A, Crooijmans RPMA, Elo K, Feldman MW, Freidlin PJ, Mäki-Tanila A, Oortwijn M, Thomson P, Vignal A, Wimmers K, Weigend S (2003) Biodiversity of 52 chicken populations assessed by micro-satellite typing of DNA pools. Genet Sel Evol 35:533–557PubMedGoogle Scholar
  122. Ho PT (1977) The indigenous origin of Chinese agriculture. In: Reed CA (ed) Origins of Agriculture. Mouton, The Hague, The Netherlands, pp 413–484Google Scholar
  123. Hollander WF (1970) Sex-linked chocolate coloration in the Muscovy Duck. Poult Sci 49:594–596PubMedGoogle Scholar
  124. Hollander WF (1990) ABC's of Poultry Genetics. Stromberg, Pine River, USAGoogle Scholar
  125. Hollander WF, Miller WJ (1982) A new sex-linked mutation, “web-lethal” from Racing Homers. Am Racing Pigeon News 98:50–51Google Scholar
  126. Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S (2000) Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol Biol Cell 11:3645–3660PubMedGoogle Scholar
  127. Huang Y, Tu J, Cheng X, Tang B, Hu X, Liu Z, Feng J, Lou Y, Lin L, Xu K, Zhao Y, Li N (2005) Characterization of 35 novel microsatellite DNA markers from the duck (Anas platy-rhynchos) genome and cross-amplification in other birds. Genet Sel Evol 37:455–472PubMedGoogle Scholar
  128. Huang YQ, Deng XM, Du ZQ, Qiu X, Du X, Chen W, Morisson M, Leroux S, Ponce de Leon FA, Da Y, Li N (2006a) Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene 374:10–18Google Scholar
  129. Huang Y, Zhao Y, Haley CS, Hu S, Hao J, Wu C, Li N (2006b) A genetic and cytogenetic map for the duck (Anas platy-rhynchos). Genetics 173:287–296Google Scholar
  130. Huang Y, Haley CS, Wu F, Hu S, Hao J, Wu C, Li N (2007) Genetic mapping of quantitative trait loci affecting carcass and meat quality traits in Beijing ducks (Anas platyrhynchos). Anim Genet 38:114–119.PubMedGoogle Scholar
  131. Hutt FB (1933) Genetics of the fowl. II. A four-gene autosomal linkage group. Genetics 18:82–94PubMedGoogle Scholar
  132. Hutt FB (1936) Genetics of the fowl. VI. A tentative chromosome map. In: Ag V (ed) Neue Forschungen in Tierzucht und Abstammungslehre (Festschrift zum 60. Geburtstag von Prof. Dr. J. Ulrich Duerst). Verbandsdruckerei, Bern, Switzerland, pp 105–112Google Scholar
  133. Hutt FB (1949) Genetics of the Fowl. McGraw-Hill, New York, USAGoogle Scholar
  134. Hutt FB (1960) New loci in the sex chromosome of the fowl. Heredity 15:97–110Google Scholar
  135. Hutt FB (1964) Animal Genetics. Ronald, New York, USAGoogle Scholar
  136. Hutt FB, Lamoreux WF (1940) Genetics of the fowl. 11. A linkage map for six chromosomes. J Hered 31:231–235Google Scholar
  137. Hyams E (1972) Animals in the Service of Man: 10000 Years of Domestication. J.M. Dent and Sons, London, UKGoogle Scholar
  138. Ikeobi CO, Woolliams JA, Morrice DR, Law A, Windsor D, Burt DW, Hocking PM (2002) Quantitative trait loci affecting fatness in the chicken. Anim Genet 33:428–435PubMedGoogle Scholar
  139. International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716Google Scholar
  140. International Chicken Polymorphism Map Consortium (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722Google Scholar
  141. Itoh Y, Arnold AP (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13:47–56PubMedGoogle Scholar
  142. Itoh Y, Mizuno S (2002) Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Res 10:499–511PubMedGoogle Scholar
  143. Itoh Y, Kampf K, Arnold AP (2006) Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements. Chromosome Res 14:805–815PubMedGoogle Scholar
  144. Ivanov MF (1924) Poultry Breeds. Ekonomicheskaya zhizn', Moscow, USSRGoogle Scholar
  145. Jennen DGJ, Vereijken ALJ, Bovenhuis H, Crooijmans RPMA, Veenendaal A, van der Poel JJ, Groenen MAM (2004) Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci 83:295–301PubMedGoogle Scholar
  146. Jensen P (2005) Genomics: the chicken genome sequence. Heredity 94:567–568PubMedGoogle Scholar
  147. Johnsgard PA (1999) The Pheasants of the World; Biology and Natural History, 2nd edn. Smithsonian Institution Press, Washington, DC, USAGoogle Scholar
  148. Jull MA (1930) The association of comb and crest characters in the domestic fowl. J Hered 21:21–28Google Scholar
  149. Kadi F, Mouchiroud D, Sabeur G, Bernardi G (1993) The compositional patterns of the avian genomes and their evolutionary implications. J Mol Evol 37:544–551Google Scholar
  150. Kagami H, Nakamura H, Tomita T (1990) Sex identification in chickens by means of the presence of the W chromosome specific repetitive DNA units. Jap Poult Sci 27:379–384Google Scholar
  151. Kahn NW, Quinn TW (1999) Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system. J Mol Evol 49:750–759PubMedGoogle Scholar
  152. Kahn NW, St John J, Quinn TW (1998) Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115:1074–1078Google Scholar
  153. Kaiser MG, Deeb N, Lamont SJ (2002) Microsatellite markers linked to Salmonella enterica serovar enteritidis vaccine response in young F1 broiler-cross chicks. Poult Sci 81:193–201PubMedGoogle Scholar
  154. Kamara D, Geng T, Xu J, Guynn S, Hopwood K, Smith EJ (2007) Isolation and characterization of microsatellite markers from the budgerigar, Melopsittacus undulatus. Mol Ecol Notes 7:507–509Google Scholar
  155. Kameda K, Goodridge AG (1991) Isolation and partial characterization of the gene for goose fatty acid synthase. J Biol Chem 266:419–426PubMedGoogle Scholar
  156. Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102:326–330PubMedGoogle Scholar
  157. Kato J, Hattori T, Ohba S, Tamaki Y, Yamada N, Taguchi T, Ogihara J, Ohya K, Itoh Y, Hori T, Asakawa S, Shimizu N, Mizuno S (2002) Efficient selection of genomic clones from a female chicken bacterial artificial chromosome library by four-dimensional polymerase chain reactions. Poult Sci 81:1501–1508PubMedGoogle Scholar
  158. Kayang BB, Inoue-Murayama M, Hoshi T, Matsuo K, Takahashi H, Minezawa M, Mizutani M, Ito S (2002) Microsatellite loci in Japanese quail and cross-species amplification in chicken and guinea fowl. Genet Sel Evol 34:233–253PubMedGoogle Scholar
  159. Kayang BB, Vignal A, Inoue-Murayama M, Miwa M, Monvoi-sin JL, Ito S, Minvielle F (2004) A first-generation micro- satellite linkage map of the Japanese quail. Anim Genet 35:195–200PubMedGoogle Scholar
  160. Kayang BB, Fillon V, Inoue-Murayama M, Miwa M, Leroux S, Feve K, Monvoisin JL, Pitel F, Vignoles M, Mouilhayrat C, Beaumont C, Ito S, Minvielle F, Vignal A (2006) Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics 7:101PubMedGoogle Scholar
  161. Kear J (1975) How wildfowl could improve our domestic breeds. In: Waterfowl Yearbook. Buyer's Guide 1975–1976, pp 37–41Google Scholar
  162. Keeton GW, Muir WM, Aggrey SE (eds) (2003) Poultry Genetics, Breeding and Biotechnology. CABI, Oxon, UKGoogle Scholar
  163. Kellner WA, Sullivan RT, Carlson BH, Thomas JW (2005) Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates. Genome Res 15:166–173PubMedGoogle Scholar
  164. Kerje S, Lind J, Schütz K, Jensen P, Andersson L (2003) Melano-cortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim Genet 34:264–274PubMedGoogle Scholar
  165. Kikuchi S, Fujima D, Sasazaki S, Tsuji S, Mizutani M, Fujiwara A, Mannen H (2005) Construction of a genetic linkage map of Japanese quail (Coturnix japonica) based on AFLP and microsatellite markers. Anim Genet 36:227–231PubMedGoogle Scholar
  166. Kogan ZM (1979) Exterior and Interior Characters in Chickens (Genetics and Economical Importance). Nauka, Novosibirsk, USSRGoogle Scholar
  167. Lacson JM, Morizot DC (1988) Confirmation of avian sex- chromosome linkage of liver cytosolic aconitase (ACO1). Cytogenet Cell Genet 48:244–245PubMedGoogle Scholar
  168. Lamont SJ, Lakshmanan N, Plotsky Y, Kaiser MG, Kuhn M, Arthur JA, Beck NJ, O'Sullivan NP (1996) Genetic markers linked to quantitative traits in poultry. Anim Genet 27:1–8PubMedGoogle Scholar
  169. Lancaster FM (1977) Sex-linkage and autosexing in waterfowl. Bull Nat Inst Poult Husbandry, Newport, UK, No 1Google Scholar
  170. Landauer W (1931) The linkage relationships of the autosomal genes for Creeper and Rose comb in the fowl. Anat Rec 51:123Google Scholar
  171. Lee EJ, Mannen H, Mizutani M, Tsuji S (2000) Genetic analysis of chicken lines by amplified fragment length polymorphism (AFLP). Anim Sci J 71:231–238Google Scholar
  172. Lee EJ, Yoshizawa K, Mannen H, Kikuchi H, Kikuchi T, Mizutani M, Tsuji S (2002) Localization of the muscular dystrophy AM locus using a chicken linkage map constructed with the Kobe University resource family. Anim Genet 33:42–48PubMedGoogle Scholar
  173. Lee MK, Ren CW, Yan B, Cox B, Zhang HB, Romanov MN, Sizemore FG, Suchyta SP, Peters E, Dodgson JB (2003) Construction and characterization of three complementary BAC libraries for analysis of the chicken genome. Anim Genet 34:151–152PubMedGoogle Scholar
  174. Li X, Wistow GJ, Piatigorsky J (1995) Linkage and expression of the argininosuccinate lyase/delta-crystallin genes of the duck: insertion of a CR1 element in the intergenic spacer. Biochim Biophys Acta 1261:25–34PubMedGoogle Scholar
  175. Lin FK, Paddock GV (1984) Characterization of duck genome fragments containing beta and epsilon globin genes. Gene 31:59–64PubMedGoogle Scholar
  176. Lipkin E, Fulton J, Cheng H, Yonash N, Soller M (2002) Quantitative trait locus mapping in chickens by selective DNA pooling with dinucleotide microsatellite markers by using purified DNA and fresh or frozen red blood cells as applied to marker-assisted selection. Poult Sci 81: 283–292PubMedGoogle Scholar
  177. Liu HC, Kung HJ, Fulton JE, Morgan RW, Cheng HH (2001) Growth hormone interacts with the Marek's disease virus SORF2 protein and is associated with disease resistance in chicken. Proc Natl Acad Sci USA 98:9203–9208PubMedGoogle Scholar
  178. Liu HC, Niikura M, Fulton J, Cheng HH (2003a) Identification of chicken stem lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek's disease resistance gene via a virus-host protein interaction screen. CytogenetGenome Res 102:304–308Google Scholar
  179. Liu W, Liu Z, Hu X, Zhang Y, Yuan J, Zhao R, Li Z, Xu W, Gao Y, Deng X, Li N (2003b) Construction and characterization of a novel 13.34-fold chicken bacterial artificial chromosome library. Anim Biotechnol 14:145–153Google Scholar
  180. Liu Y P, Wu GS, Ya o YG, Miao Y W, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 38:12–19PubMedGoogle Scholar
  181. Lock RH (1906) Recent progress in the study of variation, heredity, and evolution. E.P. Dutton, New York, USAGoogle Scholar
  182. Longmire JL, Hahn DC, Roach JL (1999) Low abundance of microsatellite repeats in the genome of the brown-headed cowbird (Molothrus ater). J Hered 90:574–578PubMedGoogle Scholar
  183. Luo M, Yu Y, Kim HR, Kudrna D, Itoh Y, Agate RJ, Melamed E, Goicoechea JL, Talag J, Mueller C, Wang W, Currie J, Sisn-eros NB, Wing RA, Arnold AP (2006) Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region. Genomics 87:181–190. Erratum in: Genomics 87:678–679PubMedGoogle Scholar
  184. Maak S, Wimmers K, Weigend S, Neumann K (2003) Isolation and characterization of 18 microsatellites in the Peking duck (Anas platyrhynchos) and their application in other waterfowl species. Mol Ecol Notes 3:224–227Google Scholar
  185. Mannen H, Murata K, Kikuchi S, Fujima D, Sasazaki S, Fujiwara A, Tsuji S (2005) Development and mapping of microsatellite markers derived from cDNA in Japanese quail (Coturnix japonica). J Poult Sci 42:263–271Google Scholar
  186. Masabanda JS, Burt DW, O'Brien PCM, Vignal A, Fillon V, Walsh PS, Cox H, Tempest HG, Smith J, Habermann F, Schmid M, Matsuda Y, Ferguson-Smith MA, Crooijmans RPMA, Groenen MAM, Griffin DK (2004) Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166:1367–1373PubMedGoogle Scholar
  187. Mason IL (ed) (1984) Evolution of Domesticated Animals. Longmann, New York, USAGoogle Scholar
  188. McElroy J P, Dekkers JC, Fulton JE, O'Sullivan N P, Soller M, Lipkin E, Zhang W, Koehler KJ, Lamont SJ, Cheng HH (2005) Micro-satellite markers associated with resistance to Marek's disease in commercial layer chickens. Poult Sci 84:1678–1688PubMedGoogle Scholar
  189. Meng A, Gong G, Chen D, Zhang H, Qi S, Tang H, Gao Z (1996) DNA fingerprint variability within and among parental lines and its correlation with performance of F1 laying hens. Theor Appl Genet 92:769–776Google Scholar
  190. Mesa CM, Thulien KJ, Moon DA, Veniamin SM, Magor KE (2004) The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics 56:192–203PubMedGoogle Scholar
  191. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked seg-regant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedGoogle Scholar
  192. Millar CD, Lambert DM, Anderson S, Halverson JL (1996) Molecular sexing of the communally breeding pukeko: an important ecological tool. Mol Ecol 5:289–293PubMedGoogle Scholar
  193. Miller WJ (1964) First linkage of a species antigen in the genus Streptopelia. Science 143:1179–1180PubMedGoogle Scholar
  194. Miller WJ (1992) Color mutants in zebra finches, Poephila gut- tata. Friends'N Feathers, Mid-America Cage Bird Society, Des Moines, USA, Oct Issue, pp 3–7Google Scholar
  195. Miller WJ, Hollander WF (1978) The quest for linkages. Pigeon Sci Genet Newsl 8:13–14Google Scholar
  196. Miller WJ, Webber JL (1969) A new species-antigen in doves and its linkage with the species-albumin type. Genetics (Suppl):s40–s41Google Scholar
  197. Minvielle F, Ito S, Inoue-Murayama M, Mizutani M, Wakasugi N (2000) Genetic analyses of plumage color mutations on the Z chromosome of Japanese quail. J Hered 91: 499–501PubMedGoogle Scholar
  198. Minvielle F, Kayang BB, Inoue-Murayama M, Miwa M, Vignal A, Gourichon D, Neau A, Monvoisin JL, Ito S (2005) Microsat-ellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail. BMC Genomics 6:87PubMedGoogle Scholar
  199. Miwa M, Inoue-Murayama M, Kayang BB, Minvielle F, Mon-voisin JL, Takahashi H, Ito S (2005) Mapping of plumage colour and blood protein loci on the microsatellite linkage map of the Japanese quail. Anim Genet 36:396–400PubMedGoogle Scholar
  200. Miwa M, Inoue-Murayama M, Kobayashi N, Kayang BB, Mizu-tani M, Takahashi H, Ito S (2006) Mapping of panda plumage color locus on the microsatellite linkage map of the Japanese quail. BMC Genet 7:2PubMedGoogle Scholar
  201. Miwa M, Inoue-Murayama M, Aoki H, Kunisada T, Hira-gaki T, Mizutani M, Takahashi H, Ito S (2007) Endothe- lin receptor B2 (EDNRB2) is associated with the panda plumage colour mutation in Japanese quail. Anim Genet 38:103–108PubMedGoogle Scholar
  202. Mizuno S, Macgregor H (1998) The ZW lampbrush chromosomes of birds: a unique opportunity to look at the molecular cytogenetics of sex chromosomes. Cytogenet Cell Genet 80:149–157PubMedGoogle Scholar
  203. Moiseyeva IG (1998) Ancient evidence for the origin and distribution of domestic fowl. Proc 10th Eur Conf “The Poultry Industry Towards the 21st Century”, Jerusalem, Israel, June 21–26, 1998, vol I, pp 244–245Google Scholar
  204. Moiseyeva IG, Lisichkina MG (1996) Origin and evolution of the domestic fowl. Priroda 5:88–96Google Scholar
  205. Moiseyeva IG, Volokhovich VA (1987) Variation of qualitative traits of chicken exterior. In: Selection and Technological Processes in Poultry Industry. Stiintsa, Chisinau, USSR, pp 70–74Google Scholar
  206. Moiseyeva IG, Semyenova SK, Bannikova LV, Filippova ND (1994) Genetic structure and origin of an old Russian Orloff chicken breed. Genetika 30:681–694Google Scholar
  207. Moiseyeva I, Romanov M, Pigaryev N (2000) Obituary: sergey petrov. Worlds Poult Sci J 56:437–438Google Scholar
  208. Moiseyeva IG, Romanov MN, Nikiforov AA, Sevastyanova AA, Semyenova SK (2003) Evolutionary relationships of Red Jungle Fowl and chicken breeds. Genet Sel Evol 35:403–423PubMedGoogle Scholar
  209. Moon DA, Magor KE (2004) Construction and characterization of a fosmid library for comparative analysis of the duck genome. Anim Genet 35:417–418PubMedGoogle Scholar
  210. Morgan TH (1910) The method of inheritance of two sex limited characters in the same animal. Proc Soc Exp Biol Med 8:17–19Google Scholar
  211. Morgan TH (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. J Exp Zool 11:365–412Google Scholar
  212. Morgan TH, Goodale HD (1912) Sex-linked inheritance in poultry. Ann N Y Acad Sci 22:113–133Google Scholar
  213. Morisson M, Lemiere A, Bosc S, Galan M, Plisson-Petit F, Pin-ton P, Delcros C, Feve K, Pitel F, Fillon V, Yerle M, Vignal A (2002) ChickRH: a chicken whole-genome radiation hybrid panel. Genet Sel Evol 34:521–533PubMedGoogle Scholar
  214. Nakamura D, Tiersch TR, Douglass M, Chandler RW (1990) Rapid identification of sex in birds by flow cytometry. Cytogenet Cell Genet 53:201–205PubMedGoogle Scholar
  215. Nanda I, Schmid M (2002) Conservation of avian Z chromosomes as revealed by comparative mapping of the Z-linked aldolase B gene. Cytogenet Genome Res 96:176–178PubMedGoogle Scholar
  216. Nanda I, Sick C, Munster U, Kaspers B, Schartl M, Staeheli P, Schmid M (1998) Sex chromosome linkage of chicken and duck type I interferon genes: further evidence of evolutionary conservation of the Z chromosome in birds. Chromosoma 107:204–210PubMedGoogle Scholar
  217. Nanda I, Zend-Ajusch E, Shan Z, Grutzner F, Schartl M, Burt DW, Koehler M, Fowler VM, Goodwin G, Schneider WJ, Mizuno S, Dechant G, Haaf T, Schmid M (2000) Conserved syn-teny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination. Cytogenet Cell Genet 89:67–78PubMedGoogle Scholar
  218. Nefedov M, Zhu B, Thorsen J, Shu CL, Cao Q, Osoegawa K, de Jong P (2003) New chicken, turkey, salmon, bovine, porcine and sheep genomic BAC libraries to complement world wide effort to map farm animals genomes. Proc Plant Anim Genome XI Int Conf, San Diego, USA, January 11–15, 2003, p 96, Abstr P87Google Scholar
  219. Niessing J, Erbil C, Neubauer V (1982) The isolation and partial characterization of linked αA- and αD-globin genes from a duck DNA recombinant library. Gene 18:187–191PubMedGoogle Scholar
  220. Nishibori M, Shimogiri T, Hayashi T, Yasue H (2005) Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim Genet 36:367–375PubMedGoogle Scholar
  221. Nishida T, Hayashi Y, Hashiguchi T, Mansjoer SS (1983) Ecological and morphological studies on the jungle fowl in Indonesia. Rep Soc Res Native Livest 10:155–170Google Scholar
  222. Nishida T, Hayashi Y, Fujioka T, Tsugiyama I, Mochizuki K (1985a) Osteometrical studies on the phylogenetic- relationships of Japanese native fowls. Jap J Vet Sci 47:25–37Google Scholar
  223. Nishida T, Hayashi Y, Hashiguchi T (1985b) Somatometrical studies on the morphological relationships of Japanese native fowls. Jap J Zootech Sci 56:645–657Google Scholar
  224. Nishida-Umehara C, Fujiwara A, Ogawa A, Mizuno S, Abe S, Yoshida MC (1999) Differentiation of Z and W chromosomes revealed by replication banding and FISH mapping of sex-chromosome-linked DNA markers in the cassowary (Aves, Ratitae). Chromosome Res 7:635–640PubMedGoogle Scholar
  225. Niu D, Fu Y, Luo J, Ruan H, Yu XP, Chen G, Zhang YP (2002) The origin and genetic diversity of Chinese native chicken breeds. Biochem Genet 40:163–174PubMedGoogle Scholar
  226. Niwa T, Shibusawa M, Matsuda Y, Terashima A, Nakamura A, Shiojiri N (2003) The Bh (black at hatch) gene that causes abnormal feather pigmentation maps to chromosome 1 of the Japanese quail. Pigment Cell Res 16:656–661PubMedGoogle Scholar
  227. Ogawa A, Solovei I, Hutchison N, Saitoh Y, Ikeda JE, Macgregor H, Mizuno S (1997) Molecular characterization and cytological mapping of a non-repetitive DNA sequence region from the W chromosome of chicken and its use as a universal probe for sexing carinatae birds. Chromosome Res 5:93–101PubMedGoogle Scholar
  228. Ogawa A, Murata K, Mizuno S (1998) The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc Natl Acad Sci USA 95:4415–4418PubMedGoogle Scholar
  229. Ohno S (1961) Sex chromosomes and microchromosomes ofGallus domesticus. Chromosoma 11:484–498PubMedGoogle Scholar
  230. Okimoto R, Stie JT, Takeuchi S, Payne WS, Salter DW (1999) Mapping the melanocortin 1-receptor (MC1-R) gene and association of MC1-R polymorphisms withElocus phe-notypes. Poult Sci 78(Suppl):60Google Scholar
  231. O'Neill M, Binder M, Smith C, Andrews J, Reed K, Smith M, Millar C, Lambert D, Sinclair A (2000)ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev Genes Evol 210:243–249PubMedGoogle Scholar
  232. Palyga J (1998) Genes for polymorphic H1 histones are linked in the Japanese quail genome. Biochem Genet 36:93–103PubMedGoogle Scholar
  233. Pang SW, Ritland C, Carlson JE, Cheng KM (1999) Japanese quail microsatellite loci amplified with chicken-specific primers. Anim Genet 30:195–199PubMedGoogle Scholar
  234. Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23:387PubMedGoogle Scholar
  235. Peters JP (1913) The cock. J Am Orient Soc 33:363–396Google Scholar
  236. Petrov SG (1931) Plan of the chromosomes of the domestic fowl. Zh Eksp Biol 7:71–76Google Scholar
  237. Petrov SG (1941) Origin of the domestic fowl. DSc (Biol) Thesis, Moscow, USSRGoogle Scholar
  238. Petrov SG (1962) Origin and evolution of domestic fowl. In: Penionzhkevich EE (ed) Poultry Science and Practice. Israel Program Sci Transl U S Dept Commer, Springfield, MS, USA, vol 1 (translated 1968)Google Scholar
  239. Pigozzi MI, Solari AJ (1998) Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch,Taeniopygia guttata. Chromosome Res 6:105–113PubMedGoogle Scholar
  240. Pimentel-Smith GE, Shi L, Drummond P, Tu Z, Smith EJ (2000) Amplification of sequence tagged sites in five avian species using heterologous oligonucleotides. Genetica 110:219–226PubMedGoogle Scholar
  241. Pisenti JM, Delany ME, Taylor RL, Jr, Abbott UK, Abplanalp H, Arthur JA, Bakst MR, Baxter-Jones C, Bitgood JJ, Bradley F, Cheng KM, Dietert RR, Dodgson JB, Donoghue A, Emsley AE, Etches R, Frahm RR, Gerrits RJ, Goetinck PF, Grunder AA, Harry DE, Lamont SJ, Martin GR, McGuire PE, Moberg GP, Pierro LJ, Qualset CO, Qureshi M, Schultz F, Wilson BW (1999) Avian genetic resources at risk: an assessment and proposal for conservation of genetic stocks in the USA and Canada. Rep No 20, Univ Calif, Div Agric Nat Resour, Genet Resour Conserv Program, Davis, CA, USAGoogle Scholar
  242. Pitel F, Berge R, Coquerelle G, Crooijmans RPMA, Groenen MAM, Vignal A, Tixier-Boichard M (2000) Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with mic- rosatellite molecular markers. Genet Sel Evol 32:73–86PubMedGoogle Scholar
  243. Plant WJ (1984) The Origin, Evolution, History and Distribution of the Domestic Fowl, Pt 2. Chicken Bone Recoveries. Privately published, 54 Bonar Street, Maitland 2320, N.S.W., AustraliaGoogle Scholar
  244. Plant WJ (1986) The Origin, Evolution, History and Distribution of the Domestic Fowl, Pt 3. The Gallus Species. Jungle Fowls. Privately published, 54 Bonar Street, Maitland 2320, N.S.W., AustraliaGoogle Scholar
  245. Plotsky Y, Kaiser MG, Lamont SJ (1995) Genetic characterization of highly inbred chicken lines by two DNA methods: DNA fingerprinting and polymerase chain reaction using arbitrary primers. Anim Genet 26:163–170PubMedGoogle Scholar
  246. Pond WG, Bell AW (eds) (2004) Encyclopedia of Animal Science. Marcel Dekker, New York, USAGoogle Scholar
  247. Punnett RC, Bateson W (1908) The heredity of sex. Science 27:785–787PubMedGoogle Scholar
  248. Raudsepp T, Houck ML, O'Brien PC, Ferguson-Smith MA, Ryder OA, Chowdhary BP (2002) Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macro-chromosomes. Cytogenet Genome Res 98:54–60PubMedGoogle Scholar
  249. Reed KM, Chaves LD, Garbe JR, Da Y, Harry DE (2003) Allelic variation and genetic linkage of avian microsatellites in a new turkey population for genetic mapping. Cytogenet Genome Res 102:331–339PubMedGoogle Scholar
  250. Ren CW, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, Zhang HB (2003) A BAC-based physical map of the chicken genome. Genome Res 13:2754–2758PubMedGoogle Scholar
  251. Rodionov AV (1996) Micro versus macro: a review of structure and function of avian micro- and macrochromosomes. Genetika 32:597–608PubMedGoogle Scholar
  252. Rodionov AV (1997) Evolution of avian chromosomes and linkage groups. Rus J Genet 33:605–617Google Scholar
  253. Rodionov AV, Lukina NA, Galkina SA, Solovei I, Saccone S (2002) Crossing over in chicken oogenesis: cytological and chiasma-based genetic maps of chicken lampbrush chromosome 1. J Hered 93:125–129PubMedGoogle Scholar
  254. Romanov MN, Bondarenko YV (1988) Improvement of a colour-sexing cross of chickens. Nauchno-tekhnicheskiy byul-leten, Ukr Poult Res Inst, Kharkiv, USSR, No 24:8–10Google Scholar
  255. Romanov MN, Dodgson JB (2006) Cross-species overgo hybridization and comparative physical mapping within avian genomes. Anim Genet 37:397–399PubMedGoogle Scholar
  256. Romanov MN, Weigend S (2001a) Using RAPD markers for assessment of genetic diversity in chickens. Arch Geflügelkd 65:145–148Google Scholar
  257. Romanov MN, Weigend S (2001b) Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poult Sci 80:1057–1063Google Scholar
  258. Romanov MN, Price JA, Dodgson JB (2003) Integration of animal linkage and BAC contig maps using overgo hybridization. Cytogenet Genome Res 102:277–281PubMedGoogle Scholar
  259. Romanov MN, Sazanov AA, Smirnov AF (2004) First century of chicken gene study and mapping — a look back and forward. Worlds Poult Sci J 60:19–41Google Scholar
  260. Romanov MN, Daniels LM, Dodgson JB, Delany ME (2005) Integration of the cytogenetic and physical maps of chicken chromosome 17. Chromosome Res 13:215–222PubMedGoogle Scholar
  261. Romanov MN, Koriabine M, Nefedov M, de Jong PJ, Ryder OA (2006) Construction of a California condor BAC library and first-generation chicken-condor comparative physical map as an endangered species conservation genomics resource. Genomics 88:711–718PubMedGoogle Scholar
  262. Roots EH, Baker RJ (2002) Distribution and characterization of microsatellites in the emu (Dromaius novaehollandiae) genome. J Hered 93:100–106PubMedGoogle Scholar
  263. Ruytier-Spira C P, Gu ZL, van der Poel JJ, Groenen MAM (1997) Bulked segregant analysis using microsatellites: mapping of the dominant white locus in the chicken. Poult Sci 76:386–391Google Scholar
  264. Ruyter-Spira C P, de Groof AJC, van der Poel JJ, Herbergs J, Masabanda J, Fries R, Groenen MAM (1998) The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. J Hered 89:295–300PubMedGoogle Scholar
  265. Saitoh Y, Ogawa A, Hori T, Kunita R, Mizuno S (1993) Identification and localization of two genes on the chicken Z chromosome: implication of evolutionary conservation of the Z chromosome among avian species. Chromosome Res 1:239–251PubMedGoogle Scholar
  266. Sasaki M, Ikeuchi T, Makino S (1968) A feather pulp culture technique for avian chromosomes, with notes on the chromosomes of the peafowl and the ostrich. Experientia 24:1292–1293Google Scholar
  267. Sasaki O, Odawara S, Takahashi H, Nirasawa K, Oyamada Y, Yamamoto R, Ishii K, Nagamine Y, Takeda H, Kobayashi E, Furukawa T (2004) Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim Genet 35:188–194PubMedGoogle Scholar
  268. Sasazaki S, Hinenoya T, Fujima D, Kikuchi S, Fujiwara A, Man-nen H (2006a) Mapping of EST markers with cDNA-AFLP method in Japanese quail (Coturnix japonica). Anim Sci J 77:42–46Google Scholar
  269. Sasazaki S, Hinenoya T, Lin B, Fujiwara A, Mannen H (2006b) A comparative map of macrochromosomes between chicken and Japanese quail based on orthologous genes. Anim Genet 37:316–320Google Scholar
  270. Sazanov A, Masabanda J, Ewald D, Takeuchi S, Tixier-Boichard M, Buitkamp J, Fries R (1998) Evolutionarily conserved telo- meric location ofBBC1andMC1Ron a microchromo-some questions the identity ofMC1Rand a pigmentation locus on chromosome 1 in chicken. Chromosome Res 6:651–654PubMedGoogle Scholar
  271. Sazanov AA, Trukhina AV, Smirnov AF, Jaszczak K (2002) Two chicken genesAPOA1andETS1are physically assigned to the same microchromosome. Anim Genet 33:321–322PubMedGoogle Scholar
  272. Sazanov AA, Sazanova AL, Tzareva VA, Kozyreva AA, Smirnov AF, Romanov MN, Price JA, Dodgson JB (2004a) Refined localization of the chicken KITLG, MGP and TYR genes on GGA1 by FISH mapping using BACs. Anim Genet 35:148–150Google Scholar
  273. Sazanov AA, Sazanova AL, Stekolnikova VA, Kozyreva AA, Smir-nov AF, Romanov MN, Dodgson JB (2004b) Chromosomal localization ofCTSL: expanding of the region of evolutionary conservatism between GGAZ and HSA9. Anim Genet 35:260Google Scholar
  274. Sazanov AA, Romanov MN, Wardcka B, Sazanova AL, Korczak M, Stekol'nikova VA, Kozyreva AA, Smirnov AF, Jaszczak K, Dodgson JB (2005) Chromosomal localization of fifteen large insert BAC clones containing three micro-satellites on chicken chromosome 4 (GGA4) which refine its centromere position. Anim Genet 36:161–163PubMedGoogle Scholar
  275. Savage TF, Harper JA, Engel HN, Jr (1993) Inheritance of tetanic torticollar spasms in turkeys. Poult Sci 72:1212–1217Google Scholar
  276. Scherf BD (ed) (2000) World watch list for domestic animal diversity, 3rd edn. Food and Agriculture Organization of the United Nations, Rome, Italy http://dad.fao.org/Google Scholar
  277. Schmid M, Nanda I, Guttenbach M, Steinlein C, Hoehn M, Schartl M, Haaf T, Weigend S, Fries R, Buerstedde J-M, Wimmers K, Burt DW, Smith J, A'Hara S, Law A, Griffin DK, Bumstead N, Kaufman J, Thomson PA, Burke T, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Tixier-Boichard M, Ladjali-Moham-medi K, Hillel J, Mäki-Tanila A, Cheng HH, Delany ME, Burnside J, Mizuno S (2000) First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 90:169–218PubMedGoogle Scholar
  278. Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde J-M, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S (2005) Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 109:415–479PubMedGoogle Scholar
  279. Schütz K, Kerje S, Carlborg O, Jacobsson L, Andersson L, Jensen P (2002) QTL analysis of a red junglefowl × White Leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav Genet 32:423–433PubMedGoogle Scholar
  280. Semyenova SK, Filenko AL, Vasilyev VA, Prosnyak MI, Sevasty-anova AA, Ryskov AP (1996) Differentiation of chicken breeds of different origin by polymorphic DNA markers. Genetika 32:795–803Google Scholar
  281. Serebrovsky AS (1922) Crossing-over involving three sex- linked genes in chickens. Am Nat 56:571–572Google Scholar
  282. Serebrovsky AS (1926) Studies on genetics of domestic fowl. In: Koltzoff NK (ed) Genetics of the domestic fowl: memoirs of Anikowo Genetical Station near Moscow. Commissariat Agric, Novaia Derevnia, Moscow, USSR, pp 3–74. (Abstracted in: Dunn, 1929)Google Scholar
  283. Serebrovsky AS, Petrov SG (1928) A case of close autosomal linkage in the fowl. J Hered 19:306–306Google Scholar
  284. Serebrovsky AS, Petrov SG (1930) On the composition of the plan of the chromosomes of the domestic hen. Zh Eksp Biol 6:157–180Google Scholar
  285. Serebrovsky AS, Wassina ET (1927) On the topography of the sex-chromosome in fowls. J Genet 17:211–216Google Scholar
  286. Sewalem A, Morrice DM, Law A, Windsor D, Haley CS, Ikeobi CO, Burt DW, Hocking PM (2002) Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult Sci 81:1775–1781PubMedGoogle Scholar
  287. Shetty S, Griffin DK, Graves JA (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–295PubMedGoogle Scholar
  288. Shetty S, Kirby P, Zarkower D, Graves JA (2002) DMRT1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element. Cytogenet Genome Res 99:245–251PubMedGoogle Scholar
  289. Shibusawa M, Minai S, Nishida-Umehara C, Suzuki T, Mano T, Yamada K, Namikawa T, Matsuda Y (2001) A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenet Cell Genet 95: 103–109PubMedGoogle Scholar
  290. Shibusawa M, Nishida-Umehara C, Masabanda J, Griffin DK, Isobe T, Matsuda Y (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet Genome Res 98:225–230PubMedGoogle Scholar
  291. Shibata T, Abe T (1996) Linkage between the loci for serum albumin and vitamin D binding protein (GC) in the Japanese quail. Anim Genet 27:195–197Google Scholar
  292. Shiina T, Shimizu C, Oka A, Teraoka Y, Imanishi T, Gojobori T, Hanzawa K, Watanabe S, Inoko H (1999) Gene organization of the quail major histocompatibility complex (MhcCoja) class I gene region. Immunogenetics 49:384–394PubMedGoogle Scholar
  293. Sibley CG (1996) Birds of the world. Thayer Birding Software, Version 2.0, Dec 1996 (a computerized book on two compressed 3.5 inch diskettes). Thayer Birding Software, Naples, USA. http://www.thayerbirding.com/Default.aspx? TabId=581; Sibley's Sequence,http://www.scricciolo.com/classificazione/sequence.htm(accessed August 20, 2008)
  294. Siegel PB, Haberfeld A, Mukherjee TK, Stallard LC, Marks HL, Anthony NB, Dunnington EA (1992) Jungle fowl-domestic fowl relationships: a use of DNA fingerprinting. Worlds Poult Sci J 48:147–155Google Scholar
  295. Siwek M, Cornelissen SJB, Nieuwland MGB, Buitenhuis AJ, Bovenhuis H, Crooijmans RPMA, Groenen MAM, de Vries-Reilingh G, Parmentier HK, van der Poel JJ (2003a) Detection of QTL for immune response to sheep red blood cells in laying hens. Anim Genet 34:422–428Google Scholar
  296. Siwek M, Buitenhuis AJ, Cornelissen SJB, Nieuwland MGB, Bovenhuis H, Crooijmans RPMA, Groenen MAM, de Vries-Reilingh G, Parmentier HK, van der Poel JJ (2003b) Detection of different quantitative trait loci for antibody responses to keyhole lympet hemocyanin andMycobac-terium butyricumin two unrelated populations of laying hens. Poult Sci 82:1845–1852Google Scholar
  297. Smith E, Shi L, Drummond P, Rodriguez L, Hamilton R, Powell E, Nahashon S, Ramlal S, Smith G, Foster J (2000a) Development and characterization of expressed sequence tags for the turkey (Meleagris gallopavo) genome and comparative sequence analysis with other birds. Anim Genet 31:62–67Google Scholar
  298. Smith EJ, Shi L, Drummond P, Rodriguez L, Hamilton R, Ramlal S, Smith G, Pierce K, Foster J (2001a) Expressed sequence tags for the chicken genome from a normalized 10-day-old White Leghorn whole embryo cDNA library: 1. DNA sequence characterization and linkage analysis. J Hered 92:1–8Google Scholar
  299. Smith EJ, Shi L, Prevost L, Drummond P, Ramlal S, Smith G, Pierce K, Foster J (2001b) Expressed sequence tags for the chicken genome from a normalized, ten-day-old white leghorn whole embryo cDNA library. 2. Comparative DNA sequence analysis of guinea fowl, quail, and turkey genomes. Poult Sci 80:1263–1272Google Scholar
  300. Smith J, Bruley CK, Paton IR, Dunn I, Jones CT, Windsor D, Mor-rice DR, Law AS, Masabanda J, Sazanov A, Waddington D, Fries R, Burt DW (2000b) Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31:96–103Google Scholar
  301. Smith J, Speed D, Hocking PM, Talbot RT, Degen WG, Schijns VE, Glass EJ, Burt DW (2006) Development of a chicken 5 K microarray targeted towards immune function. BMC Genomics 7:49PubMedGoogle Scholar
  302. Smith P, Daniel C (1975) The Chicken Book. Little, Brown, Toronto, Quebec, CanadaGoogle Scholar
  303. Sokolovskaya II (1935) Sex-linked characters in hybrids between the Muscovy duck (Cairina moschata) and Khaki duck(Anas platyrincha). In: Nurinov AA (ed) Hybridization and Acclimatization of Farm Animals in Askania Nova. VASKhNIL, Moscow Leningrad, USSR, Issue 4, vol II, pp 144–156Google Scholar
  304. Soller M, Weigend S, Romanov MN, Dekkers JCM, Lamont SJ (2006) Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poult Sci 85:2061–2078PubMedGoogle Scholar
  305. Somes RG Jr (1973) Linkage relationships in domestic fowl. J Hered 64:217–221PubMedGoogle Scholar
  306. Somes RG Jr (1978) New linkage groups and revised chromosome map of the domestic fowl. J Hered 69:401–403Google Scholar
  307. Somes RG Jr (1987) Linked loci of the chicken — Gallus gallus (G. domesticus). In: O'Brien S (ed) Genetic Maps, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, pp 422–429Google Scholar
  308. Somes RG Jr (1992) Identifying the ptilopody (feathered shank) loci of the chicken. J Hered 83:230–234PubMedGoogle Scholar
  309. Somes RG Jr, Burger RE (1988) A sex-linked mutation in the Indian blue peafowl (Pavo cristatus). Poultry Sci 66(Suppl 1):158Google Scholar
  310. Sørensen P (1997) The population of laying hens loses important genes: a case history. Anim Genet Resour Inf 22:71–78Google Scholar
  311. Spillman WJ (1908) Spurious allelomorphism: results of some recent investigations. Am Nat 42:610–615Google Scholar
  312. Staško J (1970) K autosexingu u husi chovanych na Slovensky. Vedecke Prace—Hydinarstvo, No 9:5–13Google Scholar
  313. Stern CD (2004) The chick embryo—Past, present and future as a model system in developmental biology. Mech Dev 121:1011–1013PubMedGoogle Scholar
  314. Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17PubMedGoogle Scholar
  315. Stevens L (1986) Gene structure and organisation in the domestic fowl (Gallus domesticus). Worlds Poult Sci J 42:232–242Google Scholar
  316. Stevens L (1991) Genetics and evolution of the domestic fowl. Cambridge University Press, Cambridge, UKGoogle Scholar
  317. Sturtevant AH (1911) Another sex-limited character in fowls. Science 33:337–338PubMedGoogle Scholar
  318. Sturtevant AH (1912) An experiment dealing with sex-linkage in fowls. J Exp Zool 12:499–518Google Scholar
  319. Suchyta SP, Cheng HH, Burnside J, Dodgson JB (2001) Comparative mapping of chicken anchor loci orthologous to genes on human chromosomes 1, 4 and 9. Anim Genet 32:12–18PubMedGoogle Scholar
  320. Sungurov AN (1933) On the plan of the fowl chromosomes. Biol Zh 2:196–201Google Scholar
  321. Suttle AD, Sipe GR (1932) Linkage of genes for crest and frizzle. J Hered 23:135–142Google Scholar
  322. Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251Google Scholar
  323. Suzuki T, Kansaku N, Kurosaki T, Shimada K, Zadworny D, Koide M, Mano T, Namikawa T, Matsuda Y (1999a) Comparative FISH mapping on Z chromosomes of chicken and Japanese quail. Cytogenet Cell Genet 87:22–26Google Scholar
  324. Suzuki T, Kurosaki T, Shimada K, Kansaku N, Kuhnlein U, Zad-worny D, Agata K, Hashimoto A, Koide M, Koike M, Takata M, Kuroiwa A, Minai S, Namikawa T, Matsuda Y (1999b) Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenet Cell Genet 87:32–40Google Scholar
  325. Takagi N, Itoh M, Sasaki M (1972) Chromosome studies in four species of Ratitae (Aves). Chromosoma 36:281–291PubMedGoogle Scholar
  326. Takagi N, Sasaki M (1974) A phylogenetic study of bird karyo-types. Chromosoma 46:91–120PubMedGoogle Scholar
  327. Takahashi H, Tsudzuki M, Sasaki O, Niikura J, Inoue-Murayama M, Minezawa M (2005) A chicken linkage map based on microsatellite markers genotyped on a Japanese Large Game and White Leghorn cross. Anim Genet 36:463–467PubMedGoogle Scholar
  328. Takahashi R, Akahane K, Arai K (2003) Nucleotide sequences of pigeon feather keratin genes. DNA Seq 14:205–210PubMedGoogle Scholar
  329. Tang B, Huang YH, Lin L, Hu XX, Feng JD, Yao P, Zhang L, Li N (2003) Isolation and characterization of 70 novel microsatellite markers from ostrich (Struthio camelus) genome. Genome 46:833–840PubMedGoogle Scholar
  330. Tatsuda K, Fujinaka K (2001) Genetic mapping of QTL affecting body weight in chickens using a F2 family. Br Poult Sci 42:333–337PubMedGoogle Scholar
  331. Taylor EL, Vercoe P, Cockrem J, Groth D, Wetherall JD, Martin GB (1999) Isolation and characterization of microsatellite loci in the emu, Dromaius novaehollandiae, and cross-species amplification within Ratitae. Mol Ecol 8:1963–1964PubMedGoogle Scholar
  332. Tegetmeier WB (1873) The Poultry Book: Comprising the Breeding and Management af Profitable and Ornamental Poultry. G. Routledge, London, UKGoogle Scholar
  333. Thomas JW, Prasad AB, Summers TJ, Lee-Lin SQ, Maduro VV, Idol JR, Ryan JF, Thomas PJ, McDowell JC, Green ED (2002) Parallel construction of orthologous sequence-ready clone contig maps in multiple species. Genome Res 12:1277–1285PubMedGoogle Scholar
  334. Tirunagaru VG, Sofer L, Cui J, Burnside J (2000) An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones. Genomics 66:144–1451PubMedGoogle Scholar
  335. Toye AA, Schalkwyk L, Lehrach H, Bumstead N (1997) A yeast artificial chromosome (YAC) library containing 10 haploid chicken genome equivalents. Mamm Genome 8:274–276PubMedGoogle Scholar
  336. Traxler B, Brem G, Muller M, Achmann R (2000) Polymorphic DNA microsatellites in the domestic pigeon, Columba livia var. domestica. Mol Ecol 9:366–368PubMedGoogle Scholar
  337. Trefil P, Bruno MM, Mikus T, Thoraval P (1999) Sexing of chicken feather follicle, blastodermal and blood cells. Folia Biol (Praha) 45:253–256Google Scholar
  338. Tsuda Y, Nishida-Umehara C, Ishijima J, Yamada K, Matsuda Y (2007) Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116:159–173PubMedGoogle Scholar
  339. Tuiskula-Haavisto M, Honkatukia M, Vikki J, de Koning D-J, Schulman NF, Mäki-Tanila A (2002) Mapping of quantitative trait loci affecting quality and production traits in eggs layers. Poult Sci 81:919–927PubMedGoogle Scholar
  340. Vallejo RL, Bacon LD, Liu HC, Witter RL, Groenen MAM, Hillel J, Cheng HH (1998) Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F2 intercross chickens. Genetics 148:349–360PubMedGoogle Scholar
  341. van Hemert S, Hoekman AJW, Smits MA, Rebel JMJ (2007) Immunological and gene expression responses to a Salmonella infection in the chicken intestine. Ve t Res 38:51–63Google Scholar
  342. van Kaam JBCHM, van Arendonk JAM, Groenen MAM, Boven-huis H, Vereijken ALJ, Crooijmans RPMA, van der Poel JJ,Veenendaal A (1998) Whole genome scan in chickens for quantitative trait loci affecting body weight in chickens using a three generation design. Livest Prod Sci 54:133–150Google Scholar
  343. van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ, Van Arendonk JAM (1999a) Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poult Sci 78:15–23Google Scholar
  344. van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ, van Arendonk JAM (1999b) Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poult Sci 78:1091–1099Google Scholar
  345. van Kaam JBCHM, Bink MCAM, Bovenhuis H, Quaas RL (2002) Scaling to account for heterogeneous variances in a Bayesian analysis of broiler quantitative trait loci. J Anim Sci 80:45–56PubMedGoogle Scholar
  346. van Tuinen M, Dyke GJ (2004) Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Mol Phylogenet Evol 30:74–86PubMedGoogle Scholar
  347. Waddington D, Springbett AJ, Burt DW (2000) A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps. Genetics 154:323–332PubMedGoogle Scholar
  348. Wade J, Peabody C, Coussens P, Tempelman RJ, Clayton DF, Liu L, Arnold A P, Agate R (2004) A cDNA microarray from the telencephalon of juvenile male and female zebra finches. J Neurosci Methods 138:199–206PubMedGoogle Scholar
  349. Wakana S, Watanabe T, Hayashi Y, Tomita T (1986) A variant in the restriction endonuclease cleavage pattern of mito-chondrial DNA in the domestic fowl, Gallus gallus domes-ticus. Anim Genet 17:159–168PubMedGoogle Scholar
  350. Wallis JW, Aerts J, Groenen M, Crooijmans R, Layman D, Graves T, Scheer D, Kremitzki C, Higgenbotham J, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S-P, Leong S, Chinwalla A, Hillier L, Sekhon M, Wylie K, Dodgson J, Romanov MN, Cheng H, de Jong PJ, Zhang H, McPherson JD, Krzywinski M, Schein J, Mardis E, Wilson R, Warren WC (2004) A physical map of the chicken genome. Nature 432:761–764PubMedGoogle Scholar
  351. Wang H, Li H, Wang Q, Wang Y, Han H, Shi H (2006) Micro-array analysis of adipose tissue gene expression profiles between two chicken breeds. J Biosci 31:565–573PubMedGoogle Scholar
  352. Wang N, Shoffner RN (1974) Trypsin G- and C-banding for interchange analysis and sex identification in the chicken. Chromosoma 47:61–69PubMedGoogle Scholar
  353. Wang W, Lan H, Liu AH, Shi LM (1994) Variation of mitochon-drial DNA among domestic fowl and red jungle fowl. Zool Res 15:55–60Google Scholar
  354. Wardęcka B, Olszewski R, Jaszczak K, Zęba C, Pierzchala M, Wicirińska K (2002) Relationship between microsatellite marker alleles on chromosome 1–5 originating from the Rhode Island Red and Green-legged Partrigenous breeds and egg production and quality traits in F2 mapping population. J Appl Genet 43:319–329PubMedGoogle Scholar
  355. Warren DC (1928) Sex-linked characters of poultry. Genetics 13:421–433PubMedGoogle Scholar
  356. Warren DC (1933) Nine independently inherited autosomal factors in the domestic fowl. Genetics 18:68–81PubMedGoogle Scholar
  357. Warren DC (1935) A new linkage group in the fowl (Gallus domesticus). Am Nat 69:82Google Scholar
  358. Warren DC, Hutt FB (1936) Linkage relations of crest, dominant white and frizzling in the fowl. Am Nat 70:379–394Google Scholar
  359. Weigend S, Romanov MN (2001) Current strategies for the assessment and evaluation of genetic diversity in chicken resources. Worlds Poult Sci J 57:275–288Google Scholar
  360. Weigend S, Romanov MN (2002) The World Watch List for Domestic Animal Diversity in the context of conservation and utilisation of poultry biodiversity. Worlds Poult Sci J 58:519–538Google Scholar
  361. Weigend S, Vef E, Wesch G, Meckenstock E, Seibold R, Ellen-dorff F (1995) Concept for conserving genetic resources in poultry in Germany. Arch Geflügelkd 59:327–334Google Scholar
  362. West B, Zhou BX (1989) Did chicken go North? New evidence for domestication. Worlds Poult Sci J 45:205–218Google Scholar
  363. Wimmers K, Valle-Zarate A, Mathur PK, Horst P, Wittig B (1992) Oligonucleotide fingerprinting in chickens. Proc 19th Worlds Poult Congr, Amsterdam, The Netherlands, September 19–14, 1992, vol 1, pp 539–540Google Scholar
  364. Wood-Gush DGM (1959) A history of the domestic chicken from antiquity to the 19th century. Poult Sci 38:321–326Google Scholar
  365. Wright TF, Brittan-Powell EF, Dooling RJ, Mundinger PC (2004) Sex-linked inheritance of hearing and song in the Belgian Waterslager canary. Proc Biol Sci 271(Suppl 6): S409–S412PubMedGoogle Scholar
  366. Xu G, Goodridge AG (1998) A CT repeat in the promoter of the chicken malic enzyme gene is essential for function at an alternative transcription start site. Arch Biochem Biophys 358:83–91PubMedGoogle Scholar
  367. Xu S, Yonash N, Vallejo RL, Cheng HH (1998) Mapping quantitative trait loci for binary traits using a heterogeneous residual variance model: an application to Marek's disease susceptibility in chickens. Genetica 104:171–178PubMedGoogle Scholar
  368. Yamashina Y (1944) Karyotype studies in birds. I. Comparative morphology of chromosomes in seventeen races of domestic fowl. Cytologia (Tokyo) 13:270–296Google Scholar
  369. Yamashita H, Okamoto S, Maeda Y, Hashiguchi T (1994) Genetic relationships among domestic and jungle fowls revealed by DNA fingerprinting analysis. Jap Poult Sci 31:335–344Google Scholar
  370. Yang KT, Lin CY, Liou JS, Fan YH, Chiou SH, Huang CW, Wu CP, Lin EC, Chen CF, Lee YP, Lee WC, Ding ST, Cheng WT, Huang MC (2006) Differentially expressed transcripts in shell glands from low and high egg production strains of chickens using cDNA microarrays. Anim Reprod Sci 101:113–124.PubMedGoogle Scholar
  371. Yonash N, Bacon LD, Witter RL, Cheng HH (1999) High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek's disease. Anim Genet 30:126–135PubMedGoogle Scholar
  372. Yonash N, Cheng HH, Hillel J, Heller DE, Cahaner A (2001) DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poult Sci 80:22–28PubMedGoogle Scholar
  373. Yuan X, Zhang M, Ruan W, Song C, Ren L, Guo Y, Hu X, Li N (2006) Construction and characterization of a duck bacterial artificial chromosome library. Anim Genet 37:599–600PubMedGoogle Scholar
  374. Zeuner FE (1963) A History of Domesticated Animals. Hutch- inson, London, UKGoogle Scholar
  375. Zhou H, Li H, Lamont SJ (2003) Genetic markers associated with antibody response kinetics in adult chickens. Poult Sci 82:699–708PubMedGoogle Scholar
  376. Zhu JJ, Lillehoj HS, Allen PC, Van Tassell C P, Sonstegard TS, Cheng HH, Pollock D, Sadjadi M, Min W, Emara MG (2003) Mapping quantitative trait loci associated with resistance to coccidiosis and growth. Poult Sci 82:9–16PubMedGoogle Scholar
  377. Zimmer R, Verrinder Gibbins AM (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42:217–226PubMedGoogle Scholar
  378. Zimmer R, King WA, Verrinder Gibbins AM (1997) Generation of chicken Z-chromosome painting probes by micro-dissection for screening large-insert genomic libraries. Cytogenet Cell Genet 78:124–130PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael N. Romanov
    • 1
  • Alexei A. Sazanov
    • 2
  • Irina Moiseyeva
    • 3
  • Aleksandr F. Smirnov
    • 4
  1. 1.CRES — Conservation and Research for Endangered Species, Zoological Society of San DiegoArnold and Mabel Beckman Center for Conservation ResearchEscondidoUSA
  2. 2.All-Russian Institute of Animal Genetics and Breeding, Russian Academy of Agricultural ScienceSt PetersburgRussia
  3. 3.N.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  4. 4.Biological Research Institute, St Petersburg State UniversitySt PetersburgRussia

Personalised recommendations