Skip to main content

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 3))

Deer are ruminants that exist in a wide variety of habitats across the globe, and are considerably diverse in their morphology. Most living deer species have been assigned to the Cervidae family, including at least 40 species of deer, and an additional five species have been assigned to the Moschidae family. Many of the cervid species now have molecular genetic markers that are available for various genetic analyses, primarily as descriptors of genetic variability for the inference of population genetic parameters, with application to conservation and game management. The most advanced linkage map for cervids was created using a Pere David’s deer red deer hybrid mapping resource population. Development of additional genomic resources, such as high-density linkage maps and large-insert libraries, could provide value to studies of economically important traits in farmed captive populations of deer. In the absence of genomic resources specific to cervid species, studies have progressed using sequence data from other ruminants, especially cattle and sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aguzzi, A (2006) Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis. J Neurochem 97:1726–39

    PubMed  CAS  Google Scholar 

  • Ali, S, Ansari, S, Ehtesham, NZ, Azfer, MA, Homkar, U, Gopal, R, Hasnain, SE (1998) Analysis of the evolutionar-ily conserved repeat motifs in the genome of the highly endangered central Indian swamp deer Cervus duvauceli branderi. Gene 223:361–367

    PubMed  CAS  Google Scholar 

  • Anderson, JD, Honeycutt, RL, Gonzales, RA, Gee, KL, Skow, LC, Gallagher, RL, Honeycuti, DA, DeYoung, RW (2002) Development of microsatellite DNA markers for the automated genetic characterization of white-tailed deer populations. J Wildlife Manag 66:67–74

    Google Scholar 

  • Asher, GW, Adam, JL, Otway, W, Bowmar, P, Van Reenan, G, Mackintosh, CG, Dratch, P (1988) Hybridization of Pere David's deer (Elaphurus davidianus) and red deer (Cervus elaphus) by artificial insemination. J Zool Lond 215:197–203

    Article  Google Scholar 

  • Baccus, R, Ryman, N, Smith, MH, Reuterwall, C, Cameron, D (1983) Genetic variability and differentiation of large grazing mammals. J Mamm 64:109–120

    Google Scholar 

  • Barrell, GK, Muir, PD, Sykes, AR (1985) Seasonal profiles of plasma testosterone, prolactin and growth hormone in red deer stags. In: Fennessy, P. F., Drew, K. R. (eds) The Biology of Deer Production. The Royal Society of New Zealand, New Zealand, pp 185–190

    Google Scholar 

  • Beck, BB, Wemmer, C (1983) The Biology and Management of an Extinct Species — Pere David's Deer. Noyes Publications, New Jersey

    Google Scholar 

  • Bonnet, A, Thevenon, S, Claro, F, Gautier, M, Hayes, H (2001) Cytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping. Chromosome Res 9:673–687

    PubMed  CAS  Google Scholar 

  • Bonnet, A, Thevenon, S, Maudet, F, Maillard, JC (2002) Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations. Anim Genet 33:343–350

    PubMed  CAS  Google Scholar 

  • Bradshaw, HD, Jr., Otto, KG, Frewen, BE, McKay, JK, Schemske, DW (1998) Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149:367–382

    PubMed  CAS  Google Scholar 

  • Brayton, KA, O'Rourke, KI, Lyda, AK, Miller, MW, Knowles, DP (2004) A processed pseudogene contributes to apparent mule deer prion gene heterogeneity. Gene 326:167–173

    PubMed  CAS  Google Scholar 

  • Breshears, DD, Smith, MH, Cothran, EG, Johns, PE (1988) Genetic variability in white-tailed deer. Heredity 60:139–146

    PubMed  Google Scholar 

  • Broders, HG, Mahoney, SP, Montevecchi, WA, Davidson, WS (1999) Population genetic structure and the effect of founder events on the genetic variability of moose, Alces alces, in Canada. Mol Ecol 8:1309–1315

    PubMed  CAS  Google Scholar 

  • Brown, KL, Ritchie, DL, McBride, PA, Bruce, ME (2000) Detection of PrP in extraneural tissues. Microsc Res Tech 50:40–45

    PubMed  CAS  Google Scholar 

  • Brown, WM, George, M, Jr., Wilson, AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  CAS  Google Scholar 

  • Browning, SR, Mason, GL, Seward, T, Green, M, Eliason, GA, Mathiason, C, Miller, MW, Williams, ES, Hoover, E, Telling, GC (2004) Transmission of prions from mule deer and elk with chronic wasting disease to transgenic mice expressing cervid PrP. J Virol 78:13345–13350

    PubMed  CAS  Google Scholar 

  • Cervenakova, L, Rohwer, R, Williams, S, Brown, P, Gajdusek, DC (1997) High sequence homology of the PrP gene in mule deer and Rocky Mountain elk. Lancet 350:219–220

    PubMed  CAS  Google Scholar 

  • Chesser, RK, Smith, MH, Johns, PE, Manlove, MN, Straney, DO, Baccus, R (1982) Spatial temporal and age dependent heterozygosity of beta hemoglobin in white-tailed deer Odocoileus-virginianus. J Wildlife Management 46:983–990

    Google Scholar 

  • Cheverud, JM, Ehrich, TH, Vaughn, TT, Koreishi, SF, Linsey, RB, Pletscher, LS (2004) Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. J Exp Zoolog B Mol Dev Evol 302:424–435

    PubMed  Google Scholar 

  • Chikuni, K, Tabata, T, Saito, M, Monma, M (1994) Sequencing of mitochondrial cytochrome b genes for the identification of meat species. Anim Sci Technol 65:571–57

    CAS  Google Scholar 

  • Clark, RJ, Furlan, MA, Chedrese, PJ (2005) Cloning of the elk common glycoprotein alpha-subunit and the FSH and LH beta-subunit cDNAs. J Reprod Dev 51:607–616

    PubMed  CAS  Google Scholar 

  • Clarke, LA, Edery, M, Loudon, AS, Randall, VA, Postel-Vinay, MC, Kelly, PA, Jabbour, HN (1995) Expression of the pro-lactin receptor gene during the breeding and non-breeding seasons in red deer (Cervus elaphus): evidence for the expression of two forms in the testis. J Endocrinol 146:313–321

    PubMed  CAS  Google Scholar 

  • Clutton-Brock, TH, Guinness, FE, Albon, SD (1982) Red deer behaviour and ecology of the two sexes. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Cohen, FE, Prusiner, SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819

    PubMed  CAS  Google Scholar 

  • Collinge, J, Palmer, MS, Dryden, AJ (1991) Genetic predisposition to iatrogenic Creutzfeldt-Jakob disease. Lancet 337:1441–2

    PubMed  CAS  Google Scholar 

  • Come, JH, Fraser, PE, Lansbury, PT, Jr. (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 90:5959–5963

    PubMed  CAS  Google Scholar 

  • Cook, CE, Wang, Y, Sensabaugh, G (1999) A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Mol Phylogenet Evol 12:47–56

    PubMed  CAS  Google Scholar 

  • Côte, SD, Rooney, T P, Tremblay, J-P, Dussault, C, Waller, DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147

    Google Scholar 

  • Coulon, A, Cosson, JF, Angibault, JM, Cargnelutti, B, Galan, M, Morellet, N, Petit, E, Aulagnier, S, Hewison, AJ (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    PubMed  CAS  Google Scholar 

  • Coulon, A, Guillot, G, Cosson, JF, Angibault, JM, Aulagnier, S, Cargnelutti, B, Galan, M, Hewison, AJ (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    PubMed  CAS  Google Scholar 

  • Crawford, AM, Bixley, MJ, Anderson, RM, McEwan, JC (2006) Uptake of DNA testing by the livestock industries of New Zealand. Proc 8th World Congr on Genet Appl Livestock Prod, Belo Horizonte, Brazil, August, pp 13–18

    Google Scholar 

  • Cronin, MA (1991) Mitochondrial-DNA phylogeny of deer (Cervidae). J Mamm 72:533–566

    Google Scholar 

  • Cronin, MA (1992) Intraspecific variation in mitochondrial DNA of North American cervids. J Mamm 73:70–82

    Google Scholar 

  • Cronin, MA, Renecker, L, Pierson, BJ, Patton, JC (1995) Genetic variation in domestic reindeer and wild caribou in Alaska. Anim Genet 26:427–34

    PubMed  CAS  Google Scholar 

  • Cronin, MA, Stuart, R, Pierson, BJ, Patton, JC (1996) K-casein gene phylogeny of higher ruminants (Pecora, Artiodac-tyla). Mol Phylogenet Evol 6:295–311

    PubMed  CAS  Google Scholar 

  • Cronin, MA, Patton, JC, Balmysheva, N, MacNeil, MD (2003) Genetic variation in caribou and reindeer (Rangifer taran- dus). Anim Genet 34:33–41

    PubMed  CAS  Google Scholar 

  • Cronin, MA, MacNeil, MD, Patton, JC (2005) Variation in mito-chondrial DNA and microsatellite DNA in caribou (Rang-ifer tarandus) in North America. J Mamm 86:495–505

    Google Scholar 

  • Cronin, MA, Macneil, MD, Patton, JC (2006) Mitochondrial DNA and microsatellite DNA variation in domestic Reindeer (Rang-ifer tarandus tarandus) and relationships with wild Caribou (Rangifer tarandus g ranti, Rangifer tarandus groenlandicus, and Rangifer tarandus caribou). J Hered 97:525–530

    PubMed  CAS  Google Scholar 

  • DeWoody, JA, Honeycutt, RL, Skow, LC (1995) Microsatellite markers in white-tailed deer. J Hered 86:317–319

    PubMed  CAS  Google Scholar 

  • DeYoung, RW, Demarais, S, Gonzales, RA, Honeycutt, RL, Gee, KL (2002) Multiple paternity in white-tailed deer (Odo-coileus virginianus) revealed by DNA microsatellites. J Mamm 83:884–892

    Google Scholar 

  • DeYoung, RW, Demarais, S, Honeycutt, RL, Rooney, A P, Gonzales, RA, Gee, KL (2003) Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol 12:3237–3252

    PubMed  CAS  Google Scholar 

  • Ditchkoff, SS, Lochmiller, RL, Masters, RE, Hoofer, SR, Van Den Bussche, RA (2001) Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for good-genes advertisement. Evolution Int J Org Evolution 55:616–625

    CAS  Google Scholar 

  • Douzery, E, Randi, E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14:1154–1166

    PubMed  CAS  Google Scholar 

  • Ellegren, H, Mikko, S, Wallin, K, Andersson, L (1996) Limited polymorphism at the major histocompatibility complex (MHC) loci in the Swedish moose. Mol Ecol 5:3–9

    PubMed  CAS  Google Scholar 

  • Ellsworth, DL, Honeycutt, RL, Silvy, NJ, Bichman, JW, Klimstra, WD (1994a) Historical biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed deer from southeastern United States. Evolution 48:122–136

    Google Scholar 

  • Ellsworth, DL, Honeycutt, RL, Silvy, NJ, Smith, MH, Bickham, JW, Klimstra, WD (1994b) White-tailed deer restoration to the southeastern United States: evaluating genetic variation. J Wildlife Manage 58:686–697

    Google Scholar 

  • Engel, SR, Linn, RA, Taylor, JF, Davis, SK (1996) Conservation of microsatellite loci across species of artiodactyls: implications for population studies. J Mamm 77:504–518

    Google Scholar 

  • Excoffier, L, Heckel, G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758

    PubMed  CAS  Google Scholar 

  • Fajardo, V, Gonzalez, I, Lopez-Calleja, I, Martin, I, Hernandez, PE, Garcia, T, Martin, R (2006) PCR-RFLP authentication of meats from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos taurus), sheep (Ovis aries), and goat (Capra hircus). J Agric Food Chem 54:1144–1150

    PubMed  CAS  Google Scholar 

  • Feijao, PC, Neiva, LS, de Azeredo-Espin, AM, Lessinger, AC (2006) AMiGA: the arthropodan mitochondrial genomes accessible database. Bioinformatics 22:902–903

    PubMed  CAS  Google Scholar 

  • Feulner, PG, Bielfeldt, W, Zachos, FE, Bradvarovic, J, Eckert, I, Hartl, GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306

    PubMed  CAS  Google Scholar 

  • Fickel, J, Reinsch, A (2000) Microsatellite markers for the European Roe deer (Capreolus capreolus). Mol Ecol 9:994–995

    PubMed  CAS  Google Scholar 

  • Fisher, RA (1958) The genetical theory of natural selection. Dover, New York

    Google Scholar 

  • Fontana, F, Rubini, M (1990) Chromosomal evolution in Cervi-dae. Biosystems 24:157–174

    PubMed  CAS  Google Scholar 

  • Frantz, AC, Pourtois, JT, Heuertz, M, Schley, L, Flamand, MC, Krier, A, Bertouille, S, Chaumont, F, Burke, T (2006) Genetic structure and assignment tests demonstrate illegal trans-location of red deer (Cervus elaphus) into a continuous population. Mol Ecol 15:3191–3203

    PubMed  CAS  Google Scholar 

  • Fukui, E, Kojima, T, Yoshizawa, M, Muramatsu, S, Yoshikawa, T, Tanji, T (1996) Genetic polymorphism of electrophoretic type of serum proteins and red cell enzymes in Japanese sika deer. Anim Sci Technol 67:574–578

    CAS  Google Scholar 

  • Galan, M, Cosson, JF, Aulagnier, S, Maillard, JC, Thevenon, S, Hewi-son, AJM (2003) Cross-amplification tests of ungulate primers in roe deer (Capreolus capreolus) to develop a multiplex panel of 12 microsatellite loci. Mol Ecol Notes 3:142–146

    CAS  Google Scholar 

  • Gatesy, J, Yelon, D, DeSalle, R, Vrba, ES (1992) Phylogeny of the Bovidae (Artiodactyla, Mammalia), based on mitochon-drial ribosomal DNA sequences. Mol Biol Evol 9:433–446

    PubMed  CAS  Google Scholar 

  • Gaur, A, Singh, A, Arunabala, V, Umapathy, G, Shailaja, K, Singh, L (2003) Development and characterization of 10 novel microsatellite markers from Chital deer (Cervus axis) and their cross-amplification in other related species. Mol Ecol Notes 3:607–609

    CAS  Google Scholar 

  • Goodman, SJ, Barton, NH, Swanson, G, Abernethy, K, Pember-ton, JM (1999) Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152:355–371

    PubMed  CAS  Google Scholar 

  • Goosen, GJ, Dodds, KG, Tate, ML, Fennessy, PF (1999) QTL for live weight traits in Pere David's x red deer interspecies hybrids. J Hered 90:643–647

    PubMed  CAS  Google Scholar 

  • Goosen, GJ, Dodds, KG, Tate, ML, Fennessy, PF (2000) QTL for pubertal and seasonality traits in male Pere David's x red deer interspecies hybrids. J Hered 91:397–400

    PubMed  CAS  Google Scholar 

  • Gordon, B (2003) Rangifer and man: an ancient relationship. Rangifer 14:15–28

    Google Scholar 

  • Gould, SJ (1974) The origin and function of bizarre structures, antler size and skull size in the Irish elk, Megaloceros gian-teus. Evolution 28:191–220

    Google Scholar 

  • Groves, C, Grubb, P (1987) Relationships of living deer. In: Wemmer, C. (ed) Biology and Management of the Cervi-dae. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Grubb, P, Groves, CP (2003) Relationships of living deer. In: Wemmer, C. M. (ed) Biology and Management of the Cervidae. Smithsonian Institution Press, Washington, DC pp. 21–59

    Google Scholar 

  • Gyllensten, U, Ryman, N, Reuterwall, C, Dratch, P (1983) Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51:561–580

    Google Scholar 

  • Hartl, DL, Clark, AG (1997) Principles of Population Genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hartl, GB, Schleger, A, Slowak, M (1986) Genetic variability in fallow deer, Dama dama L. Anim Genet 17:335–341

    PubMed  CAS  Google Scholar 

  • Hartl, GB, Willing, R, Lang, G, Klein, F, Koller, J (1990) Genetic variability and differentiation in red deer (Cervus elaphus L) of Central Europe. Genet Sel Evol 22:289–306

    Google Scholar 

  • Hartl, GB, Lang, G, Klein, F, Willing, R (1991) Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distribution. Heredity 66 (Pt 3):343–350

    PubMed  Google Scholar 

  • Hartl, GB, Apollonio, M, Mattioli, L (1995a) Genetic determination of cervid antlers in relation to their significance in social interactions. Acta Theriol 40:199–205

    Google Scholar 

  • Hartl, GB, Nadlinger, K, Apollonio, M, Markov, G, Klein, F, Lang, G, Findo, S, Markowski, J (1995b) Extensive mitochondrial-DNA differentiation among European Red deer (Cervus elaphus) populations: implications for conservation and management. Z Säugetierkunde 60:41–52

    Google Scholar 

  • Hartl, GB, Zachos, FE, Nadlinger, K, Ratkiewicz, M, Klein, F, Lang, G (2005) Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implications for management and conservation. Mamm Biol 70:24–34

    Google Scholar 

  • He, K, Wilton, SD, Tate, ML, Murphy, MP (1997) Characterization of the erythrocyte superoxide dismutase allozymes in the deer Cervus elaphus. Anim Genet 28:299–301

    PubMed  CAS  Google Scholar 

  • Heaton, MP, Leymaster, KA, Freking, BA, Hawk, DA, Smith, T P, Keele, JW, Snelling, WM, Fox, JM, Chitko-McKown, CG, Laegreid, WW (2003) Prion gene sequence variation within diverse groups of U.S. sheep, beef cattle, and deer. Mamm Genome 14:765–777

    PubMed  CAS  Google Scholar 

  • Hemmer, H (1990) Domestication: The Decline of Environmental Appreciation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Herzog, S (1988) Polymorphism and genetic control of eryth-rocyte 6-phosphogluconate dehydrogenase in the genus Cervus. Anim Genet 19:291–294

    PubMed  CAS  Google Scholar 

  • Herzog, S (1989) Genetic polymorphism of transferrin in fallow deer, Cervus dama L. Anim Genet 20:421–426

    PubMed  CAS  Google Scholar 

  • Herzog, S (1990) Genetic analysis of erythrocyte superoxide dismutase polymorphism in the genus Cervus. Anim Genet 21:391–400

    PubMed  CAS  Google Scholar 

  • Hmwe, SS, Zachos, FE, Eckert, I, Lorenzini, R, Fico, R, Hartl, GB (2006) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701

    Google Scholar 

  • Horiuchi, M, Caughey, B (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. Embo J 18:3193–203

    PubMed  CAS  Google Scholar 

  • Housley, DJ, Zalewski, ZA, Beckett, SE Venta, PJ (2006) Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs. BMC Genomics 7:253

    PubMed  Google Scholar 

  • Huang, L, Chi, J, Nie, W, Wang, J Yang, F (2006) Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica 127:25–33

    PubMed  Google Scholar 

  • Huber, S, Bruns, U Arnold, W (2002) Sex determination of red deer using polymerase chain reaction of DNA from feces. Wildlife Soc Bull 30:208–212

    Google Scholar 

  • Huber, S, Bruns, U, Arnold, W (2003) Genotyping herbivore feces facilitating their further analyses. Wildlife Soc Bull 31:692–697

    Google Scholar 

  • Hughes, S, Hayden, TJ, Douady, CJ, Tougard, C, Germonpre, M, Stuart, A, Lbova, L, Carden, RF, Hanni, C, Say, L (2006) Molecular phylogeny of the extinct giant deer, Megaloceros giganteus. Mol Phylogenet Evol 40:285–291

    PubMed  CAS  Google Scholar 

  • Jabbour, HN, Clarke, LA, Boddy, S, Pezet, A, Edery, M, Kelly, PA (1996) Cloning, sequencing and functional analysis of a truncated cDNA encoding red deer prolactin receptor: an alternative tyrosine residue mediates beta-casein promoter activation. Mol Cell Endocrinol 123:17–26

    PubMed  CAS  Google Scholar 

  • Jabbour, HN, Clarke, LA, Bramley, T, Postel-Vinay, MC, Kelly, PA, Edery, M (1998) Alternative splicing of the prolactin receptor gene generates a 1.7 kb RNA transcript that is linked to prolactin function in the red deer testis. J Mol Endocrinol 21:51–59

    PubMed  CAS  Google Scholar 

  • Jaeger, F, Hecht, W, Herzog, A (1992) Investigation of mitochon-drial DNA from Hessian Roe Deer Capreolus capreolus. Z Jagdwiss 38:26–33

    Google Scholar 

  • Janis, CM, Scott, KM (1987) The interrelationships of higher ruminant families, with special emphasis on the members of the Cervidae. Am Mus Novit 2893:1–85

    Google Scholar 

  • Jepsen, BI, Siegismund, HR, Fredholm, M (2002) Population genetics of native caribou (Rangifer tarandus groenlan-dicus) and the semi-domestic reindeer (Rangifer tarandus tarandus) in Southwestern Greenland: evidence of intro-gression. Conserv Genet 3:401–409

    CAS  Google Scholar 

  • Jewell, JE, Conner, MM, Wolfe, LL, Miller, MW, Williams, ES (2005) Low frequency of PrP genotype 225SF among free-ranging mule deer (Odocoileus hemionus) with chronic wasting disease. J Gen Virol 86:2127–34

    PubMed  CAS  Google Scholar 

  • Johnson, C, Johnson, J, Clayton, M, McKenzie, D, Aiken, J (2003) Prion protein gene heterogeneity in free-ranging white-tailed deer within the chronic wasting disease affected region of Wisconsin. J Wildl Dis 39:576–581

    PubMed  CAS  Google Scholar 

  • Johnson, C, Johnson, J, Vanderloo, J P, Keane, D, Aiken, JM, McKenzie, D (2006) Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J Gen Virol 87:2109–2114

    PubMed  CAS  Google Scholar 

  • Jones, KC, Levine, KF, Banks, JD (2002) Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Mol Ecol Notes 2:425–427

    CAS  Google Scholar 

  • Karlin, AA, Heidt, GA, Sugg, DW (1989) Genetic variation and heterozygosity in white-tailed deer in southern Arkansas USA. Am Midl Nat 121:273–284

    Google Scholar 

  • Kennedy, PK, Kennedy, ML, Beck, ML (1987) Genetic variability in white-tailed deer (Odocoileus virginianus) and its relationship to environmental parameters and herd origin (Cervidae). Genetica 74:189–201

    Google Scholar 

  • Kollars, PG, Beck, ML, Mech, SG, Kennedy, PK, Kennedy, ML (2004) Temporal and spatial genetic variability in white-tailed deer (Odocoileus virginianus). Genetica 121:269–276

    PubMed  CAS  Google Scholar 

  • Kraus, F, Miyamoto, MM (1991) Rapid cladogenesis among the pecoran ruminants, evidence from mitochondrial DNA sequences. Syst Zool 40:117–130

    Google Scholar 

  • Kruuk, LE, Clutton-Brock, TH, Slate, J, Pemberton, JM, Broth-erstone, S, Guinness, FE (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703

    PubMed  CAS  Google Scholar 

  • Kruuk, LEB, Clutton-Brock, TH, Rose, KE, Guinness, FE (1999) Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc R Soc Lond B Biol Ser. B. 266:1655–1661

    CAS  Google Scholar 

  • Kucera, TE (1991) Genetic variability in Tule Elk. California Fish Game 77:70–78

    Google Scholar 

  • Kuehn, R, Haller, H, Schroeder, W, Rottmann, O (2004) Genetic roots of the red deer (Cervus elaphus) population in Eastern Switzerland. J Hered 95:136–143

    PubMed  CAS  Google Scholar 

  • Kuehn, R, Ludt, CJ, Schroeder, W, Rottmann, O (2005) Molecular phylogeny of Megaloceros giganteus—the giant deer or just a giant red deer? Zoolog Sci 22:1031–1044

    PubMed  CAS  Google Scholar 

  • Kuhn, R, Anastassiadis, C, Pirchner, F (1996) Transfer of bovine microsatellites to the cervine (Cervus elaphus). Anim Genet 27:199–201

    PubMed  CAS  Google Scholar 

  • Kuwayama, R, Ozawa, T (2000) Phylogenetic relationships among European red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 15:115–123

    PubMed  CAS  Google Scholar 

  • Leberg, PL, Stangel, PW, Hillstead, HO, Marchinton, RL, Smith, MH (1994) Genetic structure of reintroduced wild turkey and white-tailed deer populations. J Wildlife Manage 58:698–711

    Google Scholar 

  • Leberg, PL, Ellsworth, DL (1999) Further evaluation of the genetic consequences of translocations on southeastern white-tailed deer populations. J Wildlife Manage 63:327–334

    Google Scholar 

  • Lee, C, Court, DR, Cho, C, Haslett, JL, Lin, CC (1997) Higher-order organization of subrepeats and the evolution of cer-vid satellite I DNA. J Mol Evol 44:327–335

    PubMed  CAS  Google Scholar 

  • Li, YC, Lee, C, Chang, WS, Li, SY, Lin, CC (2002) Isolation and identification of a novel satellite DNA family highly conserved in several Cervidae species. Chromosoma 111:176–183

    PubMed  CAS  Google Scholar 

  • Liming, S, Yingying, Y, Xingsheng, D (1980) Comparative cytogenetic studies on the red muntjac, Chinese muntjac, and their F1 hybrids. Cytogenet Cell Genet 26:22–27

    PubMed  CAS  Google Scholar 

  • Lin, CC, Li, YC (2006) Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis). Cytogenet Genome Res 114:147–154

    PubMed  CAS  Google Scholar 

  • Linnell, JC, Cross, TF (1991) The biochemical systematics of red and sika deer (genus Cervus) in Ireland. Hereditas 115:267–273

    PubMed  CAS  Google Scholar 

  • Lister, AM, Edwards, CJ, Nock, DA, Bunce, M, van Pijlen, IA, Bradley, DG, Thomas, MG, Barnes, I (2005) The phyloge-netic position of the ‘giant deer’ Megaloceros giganteus. Nature 438:850–853

    PubMed  CAS  Google Scholar 

  • Liu, J, Mercer, JM, Stam, LF, Gibson, GC, Zeng, ZB, Laurie, CC (1996) Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D.mauritiana. Genetics 142:1129–1145

    PubMed  CAS  Google Scholar 

  • Lorenzini, R, Mattioli, S, Fico, R (1998) Allozyme variation in native red deer Cervus elaphus of Mesola Wood, northern Italy: Implications for conservation. Acta Theriol Suppl. 5:63–74

    Google Scholar 

  • Lorenzini, R, Lovari, S (2006) Genetic diversity and phyloge-ography of the European roe deer: the refuge area theory revisited. Biol J Linn Soc 88:85–100

    Google Scholar 

  • Ludt, CJ, Schroeder, W, Rottmann, O, Kuehn, R (2004) Mito-chondrial DNA phylogeography of red deer (Cervus elap-hus). Mol Phylogenet Evol 31:1064–1083

    PubMed  CAS  Google Scholar 

  • Maqbool, NJ, Tate, ML, Dodds, KG, Anderson, RM, McEwan, KM, Mathias, HC, McEwan, JC, Hall, RJ (2007) A QTL study of growth and body shape in the inter-species hybrid of Père David's deer (Elaphurus davidianus) and red deer (Cervus elaphus). Anim Genet 38:270–276

    PubMed  CAS  Google Scholar 

  • Manlove, MN, Avise, JC, Hillstead, HO, Ramsey, PR, Smith, MH, Straney, DO (1975) Starch gel electrophoresis for the study of population genetics in white-tailed deer. Proc, Ann Conf S E Assoc Game Fish Comm 29:392–403

    Google Scholar 

  • Marshall, TC, Slate, J, Kruuk, LE, Pemberton, JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    PubMed  CAS  Google Scholar 

  • Martinez, JG, Carranza, J, Fernandez-Garcia, JL, Sanchez-Pri-eto, CB (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Mamm 66:1273–1282

    Google Scholar 

  • Matsunaga, T, Chikuni, K, Tanabe, R, Muroya, S, Nakai, H, Shi-bata, K, Yamada, J, Shinmura, Y (1998) Determination of mitochondrial cytochrome B gene sequence for red deer (Cervus elaphus) and the differentiation of closely related deer meats. Meat Sci 49:379–385

    CAS  Google Scholar 

  • Mikko, S, Andersson, L (1995) Low major histocompatibility complex class II diversity in European and North American moose. Proc Natl Acad Sci USA 92:4259–4263

    PubMed  CAS  Google Scholar 

  • Miyamoto, MM, Kraus, F, Ryder, OA (1990) Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci USA 87:6127–6131

    PubMed  CAS  Google Scholar 

  • Morin, PA, Wallis, J, Moore, JJ, Woodruff, DS (1994) Paternity exclusion in a community of wild chimpanzees using hypervariable simple sequence repeats. Mol Ecol 3:469–477

    PubMed  CAS  Google Scholar 

  • Mörsch, G, Leibenguth, F (1993) DNA fingerprinting of the roe deer, Capreolus capreolus L. Comp Biochem Physiol B 104:229–233

    Google Scholar 

  • Nabata, D, Masuda, R, Takahashi, O, Nagata, J (2004) Bottleneck effects on the sika deer Cervus nippon population in Hokkaido, revealed by ancient DNA analysis. Zool Sci 21:473–481

    PubMed  CAS  Google Scholar 

  • Nagata, J, Masuda, R, Kaji, K, Kaneko, M, Yoshida, MC (1998) Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in Hokkaido Island, based on mitochondrial D-loop sequences. Mol Ecol 7:871–877

    PubMed  CAS  Google Scholar 

  • Nagata, J, Masuda, R, Tamate, HB, Hamasaki, S, Ochiai, K, Asada, M, Tatsuzawa, S, Suda, K, Tado, H, Yoshida, MC (1999) Two genetically distinct lineages of the sika deer,Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13:511–519

    PubMed  CAS  Google Scholar 

  • Neitzl, H (1987) Chromosome evolution of Cervidae: karyo-typic and molecular aspects. In: Obe, G., Basler, A. (eds) Basic and Applied Aspects in Cytogenetics. Springer-Verlag, Berlin, pp 90–112

    Google Scholar 

  • Nicol, AM, Barry, TN (2002) Pastures and forages for deer growth. In: Casey, M. J. (ed) Proc NZ Grasslands Assoc

    Google Scholar 

  • Nies, G, Zachos, FE, Hartl, GB (2005) The impact of female phi-lopatry on population differentiation in the European roe deer (Capreolus capreolus) as revealed by mitochondrial DNA and allozymes. Mamm Biol 70:130–134

    Google Scholar 

  • Nussey, DH, Coltman, DW, Coulson, T, Kruuk, LE, Donald, A,Morris, SJ, Clutton-Brock, TH, Pemberton, J (2005) Rapidly declining fine-scale spatial genetic structure in female red deer. Mol Ecol 14:3395–405

    PubMed  CAS  Google Scholar 

  • Nussey, DH, Pemberton, J, Donald, A, Kruuk, LE (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97:56–65

    PubMed  CAS  Google Scholar 

  • O'Brien, SJ, Womack, JE, Lyons, LA, Moore, KJ, Jenkins, NA, Copeland, NG (1993) Anchored reference loci for comparative genome mapping in mammals. Nat Genet 3:103–112

    PubMed  Google Scholar 

  • O'Connell, A, Denome, RM (1999) Microsatellite locus amplification using deer antler DNA. Biotechniques 26:1086– 1088

    PubMed  Google Scholar 

  • O'Conner, MJ (2006) Current deer industry issues. Proc Deer Branch of the New Zealand Veterinary Association, pp 26–28

    Google Scholar 

  • O'Rourke, KI, Baszler, T V, Miller, JM, Spraker, TR, Sadler-Riggleman, I, Knowles, DP (1998) Monoclonal antibody F89/160.1.5 defines a conserved epitope on the ruminant prion protein. J Clin Microbiol 36:1750–1755

    PubMed  Google Scholar 

  • O'Rourke, KI, Besser, TE, Miller, MW, Cline, TF, Spraker, TR, Jenny, AL, Wild, MA, Zebarth, GL, Williams, ES (1999) PrP genotypes of captive and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J Gen Virol 80 (Pt 10):2765–2769

    PubMed  Google Scholar 

  • O'Rourke, KI, Spraker, TR, Hamburg, LK, Besser, TE, Brayton, KA, Knowles, DP (2004) Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J Gen Virol 85:1339–1346

    PubMed  Google Scholar 

  • Palmer, MS, Dryden, AJ, Hughes, JT, Collinge, J (1991) Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352:340–242

    PubMed  CAS  Google Scholar 

  • Pemberton, JM, Smith, RH (1985) Lack of biochemical polymorphism in British fallow deer. Heredity 55 (Pt 2): 199–207

    PubMed  Google Scholar 

  • Pemberton, JM, Slate, J, Bancroft, DR, Barrett, JA (1995) Non-amplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–52

    PubMed  CAS  Google Scholar 

  • Pemberton, JM, Smith, JA, Coulson, TN, Marshall, TC, Slate, J, Paterson, S, Albon, SD, Clutton-Brock, TH (1996) The maintenance of genetic polymorphism in small island populations: large mammals in the Hebrides. Philos Trans R Soc Lond B Biol Sci 351:745–752

    PubMed  CAS  Google Scholar 

  • Pemberton, JM, Coltman, DW, Coulson, TN, Paterson, S, Smith, JA, Slate, J, Marshall, TC (1998) Microsatellites as markers of fitness in free-living populations. Anim Genet 29 Suppl 1:1–7

    Google Scholar 

  • Pemberton, JM, Slate, J (1998) Genetic studies of wild deer populations: a technical revolution. In: Milne, J. A. (ed) Proc 3rd Internat Congr Biol Deer. Macauley Land Use Research Institute and Moredun Research Institute

    Google Scholar 

  • Pepin, L, Amigues, Y, Lepingle, A, Berthier, JL, Bensaid, A, Vaiman, D (1995) Sequence conservation of microsatel-lites betweenBos taurus(cattle),Capra hircus(goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 74 (Pt 1):53–61

    PubMed  CAS  Google Scholar 

  • Pitra, C, Fickel, J, Meijaard, E, Groves, PC (2004) Evolution and phylogeny of old world deer. Mol Phylogenet Evol 33:880–95

    PubMed  CAS  Google Scholar 

  • Poetsch, M, Seefeldt, S, Maschke, M, Lignitz, E (2001) Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer — possible employment in forensic applications. Forensic Sci Int 116:1–8

    PubMed  CAS  Google Scholar 

  • Polziehn, RO, Strobeck, C (1998) Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Mol Phylogenet Evol 10:249–258

    PubMed  CAS  Google Scholar 

  • Polziehn, RO, Hamr, J, Mallory, FF, Strobeck, C (2000) Microsat-ellite analysis of North American wapiti (Cervus elaphus) populations. Mol Ecol 9:1561–1576

    PubMed  CAS  Google Scholar 

  • Polziehn, RO, Strobeck, C (2002) A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylo-genet Evol 22:342–356

    CAS  Google Scholar 

  • Purdue, JR, Smith, MH, Patton, J (2000) Female philopatry and extreme spatial genetic heterogeneity in white-tailed deer. J Mamm 81:179–185

    Google Scholar 

  • Ramsey, PR, Avise, JC, Smith, MH, Urbston, DF (1979) Biochemical variation and genetic heterogeneity in South Carolina USA deer populations. J Wildlife Manage 43:136–142

    Google Scholar 

  • Randi, E, Apollonio, M (1988) Low biochemical variability in European fallow deer (Dama dama L.): natural bottlenecks and the effects of domestication. Heredity 61 (Pt 3):405–410

    PubMed  Google Scholar 

  • Randi, E, Mucci, N, Pierpaoli, M, Douzery, E (1998a) New phy-logenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proc Biol Sci 265:793–801

    CAS  Google Scholar 

  • Randi, E, Pierpaoli, M, Danilkin, A (1998b) Mitochondrial DNA polymorphism in populations of Siberian and European roe deer (Capreolus pygargus and C. capreolus). Heredity 80 (Pt 4):429–437

    CAS  Google Scholar 

  • Randi, E, Alves, PC, Carranza, J, Milosevic-Zlatanovic, S, Sfou-garis, A, Mucci, N (2004) Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Mol Ecol 13:3071–3083

    PubMed  CAS  Google Scholar 

  • Roed, KH, Whitten, KR (1986) Transferrin variation and evolution of Alaskan USA reindeer and caribouRangifer taran-dusL. Rangifer S1:247–252

    Google Scholar 

  • Roed, KH, Ferguson, MAD, Crete, M, Bergerud, TA (1991) Genetic variation in transferrin as a predictor for differentiation and evolution of caribou from eastern Canada. Rangifer 11:65–74

    Google Scholar 

  • Roed, KH (1998) Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae. Hereditas 129:19–25

    PubMed  CAS  Google Scholar 

  • Roed, KH, Midthjell, L (1998) Microsatellites in reindeer,Rangifer tarandus, and their use in other cervids. Mol Ecol 7:1773–1776

    PubMed  CAS  Google Scholar 

  • Ryman, N, Reuterwall, C, Nygren, K, Nygren, T (1980) Genetic variation and differentiation in Scandinavian moose (Alces alces): are large mammals monomorphic? Evolution 34:1037–1049

    Google Scholar 

  • Say, L, Naulty, F, Hayden, TJ (2003) Genetic and behavioural estimates of reproductive skew in male fallow deer. Mol Ecol 12:2793–800

    PubMed  CAS  Google Scholar 

  • Scandura, M, Tiedemann, R, Apollonio, M, Hartl, GB (1998) Genetic variation in an isolated Italian population of fallow deerDama damaas revealed by RAPD-PCR. Acta Theriol Suppl 5:163–169

    Google Scholar 

  • Schatzl, HM, Wopfner, F, Gilch, S, von Brunn, A, Jager, G (1997) Is codon 129 of prion protein polymorphic in human beings but not in animals? Lancet 349:1603–1604

    PubMed  CAS  Google Scholar 

  • Schreiber, A, Klein, F, Lang, G (1994) Transferrin polymorphism of red deer in France: evidence for spatial genetic microstruc-ture of an autochthonous herd. Genet Sel Evol 26:187–203

    Google Scholar 

  • Schreiber, A, Fakler, P (1996) NADH diaphorase polymorphism in European fallow deer. Biochem Genet 34:61–65

    PubMed  CAS  Google Scholar 

  • Scribner, KT, Smith, MH, Garrott, RA, Carpenter, LH (1991) Temporal spatial and age-specific changes in genotypic composition of mule deer. J Mamm 72:126–137

    Google Scholar 

  • Sheffield, SR, Morgan, R P, Feldhamer, GA, Harman, DM (1985) Genetic variation in white-tailed deerOdocoileus-virgin-ianuspopulations in western Maryland USA. J Mamm 66:243–255

    Google Scholar 

  • Slate, J, Coltman, DW, Goodman, SJ, MacLean, I, Pemberton, JM, Williams, JL (1998) Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim Genet 29:307–315

    PubMed  CAS  Google Scholar 

  • Slate, J, Marshall, T, Pemberton, J (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808

    PubMed  CAS  Google Scholar 

  • Slate, J, Va n Stijn, TC, Anderson, RM, McEwan, KM, Maqbool, NJ, Mathias, HC, Bixley, MJ, Stevens, DR, Molenaar, AJ, Beever, JE, Galloway, SM, Tate, ML (2002a) A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597

    CAS  Google Scholar 

  • Slate, J, Visscher, PM, MacGregor, S, Stevens, D, Tate, ML, Pem-berton, JM (2002b) A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162:1863–1873

    CAS  Google Scholar 

  • Slate, J, Phua, SH (2003) Patterns of linkage disequilibrium in mitochondrial DNA of 16 ruminant populations. Mol Ecol 12:597–608

    PubMed  CAS  Google Scholar 

  • Sorin, AB (2004) Paternity assignment for white-tailed deer (Odocoileus virginianus): mating across age classes and multiple paternity. J Mamm 85:356–362

    Google Scholar 

  • Spraker, TR, Miller, MW, Williams, ES, Getzy, DM, Adrian, WJ, Schoonveld, GG, Spowart, RA, O'Rourke, KI, Miller, JM, Merz, PA (1997) Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nel-soni) in northcentral Colorado. J Wildl Dis 33:1–6

    PubMed  CAS  Google Scholar 

  • Strandgaard, H, Simonsen, V (1993) Genetic differentiation in populations of red deer, Cervus elaphus, in Denmark. Hereditas 119:171–177

    PubMed  CAS  Google Scholar 

  • Stratil, A, Glasnak, V, Bobak, P, Cizova, D, Gabrisova, E, Kalab, P (1990) Variation of some serum proteins in red deer, Cer-vus elaphus L. Anim Genet 21:285–293

    CAS  Google Scholar 

  • Stroehlein, H, Herzog, S, Hecht, W, Herzog, A (1993) Biochemical genetic description of German and Swiss populations of red deer. Acta Theriol 38:153–161

    Google Scholar 

  • Supattapone, S, Muramoto, T, Legname, G, Mehlhorn, I, Cohen, FE, DeArmond, SJ, Prusiner, SB, Scott, MR (2001) Identification of two prion protein regions that modify scrapie incubation time. J Virol 75:1408–1413

    PubMed  CAS  Google Scholar 

  • Talbot, J, Haigh, J, Plante, Y (1996) A parentage evaluation test in North American elk (wapiti) using microsatellites of ovine and bovine origin. Anim Genet 27:117–119

    Article  PubMed  CAS  Google Scholar 

  • Tamate, HB, Tsuchiya, T (1995) Mitochondrial DNA polymorphism in subspecies of the Japanese Sika deer, Cervus nippon. J Hered 86:211–215

    PubMed  CAS  Google Scholar 

  • Tate, ML, McEwan, KM (1992) Genetic polymorphism of eryth-rocyte diaphorase in red deer, Cervus elaphus L. Anim Genet 23:449–52

    CAS  Google Scholar 

  • Tate, ML, Mathias, HC, Fennessy, PF, Dodds, KG, Penty, JM, Hill, DF (1995) A new gene mapping resource: interspecies hybrids between Pere David's deer (Elaphurus davidianus) and red deer (Cervus elaphus). Genetics 139:1383–1391

    PubMed  CAS  Google Scholar 

  • Tate, ML, Goosen, GJ, Patene, H, Pearse, AJ, McEwan, KM, Fen-nessy, PF (1997) Genetic analysis of Pere David's x red deer interspecies hybrids. J Hered 88:361–365

    PubMed  CAS  Google Scholar 

  • Tate, ML, Anderson, RM, McEwan, KM, Goosen, GJ, Pearse, AJ (1998) Genetic analysis of farmed deer hybrids. Acta Vet Hung 46:329–340

    PubMed  CAS  Google Scholar 

  • Templeton, JW, Sharp, RM, Williams, J, Davis, D, Harmel, D, Armstrong, B, Wardroup, S (1982) Single dominant major gene effect on the expression of antler point number in the white-tailed deer. In: Brown, R. D. (ed) Antler Development in Cervidae. Kingsville, Texas, Caesar Kleberg Wildlife Research Institute

    Google Scholar 

  • Thevenon, S, Bonnet, A, Claro, F, Maillard, JC (2003) Genetic diversity analysis of captive populations: the Vietnamese sika deer (Cervus nippon pseuaxis) in zoological parks. Zoo Biol 22:465–475

    CAS  Google Scholar 

  • Thevenon, S, Thuy, LT, Ly, LV, Maudet, F, Bonnet, A, Jarne, P, Mail-lard, JC (2004) Microsatellite analysis of genetic diversity of the Vietnamese sika deer (Cervus nippon pseudaxis). J Hered 95:11–18

    PubMed  CAS  Google Scholar 

  • Van Den Bussche, RA, Ross, TG, Hoofer, SR (2002) Genetic variation at a major histocompatibility locus within and among populations of white-tailed deer (Odocoileus vir-ginianus). J Mamm 83:31–39

    Google Scholar 

  • Vankova, D, Bartos, L, Cizova-Schroffelova, D, Nespor, F, Jan-durova, O (2001) Mother-offspring bonding in farmed red deer: accuracy of visual observation verified by DNA analysis. Appl Anim Behav Sci 73:157–165

    PubMed  Google Scholar 

  • Vial, L, Maudet, C, Luikart, G (2003) Thirty-four polymorphic microsatellites for European roe deer. Mol Ecol Notes 3:523–527

    CAS  Google Scholar 

  • Volmer, K, Hecht, W, Herzog, A, Faltings, V (1995) Genetic investigations of Roe Deer. Z Jagdwiss 41:241–247

    Google Scholar 

  • Wagener, A, Blottner, S, Goritz, F, Fickel, J (2000) Detection of growth factors in the testis of roe deer (Capreolus capreo-lus). Anim Reprod Sci 64:65–75

    PubMed  CAS  Google Scholar 

  • Wallis, OC, Bill, LJ, Burt, EJ, Ellis, SA, Wallis, M (2006) Polymorphism of the growth hormone gene of red deer (Cervus elaphus). Gen Comp Endocrinol 146:180–185

    PubMed  CAS  Google Scholar 

  • Wang, M, Schreiber, A (2001) The impact of habitat fragmentation and social structure on the population genetics of roe deer (Capreolus capreolus L.) in Central Europe. Heredity 86:703–715

    PubMed  CAS  Google Scholar 

  • Wang, M, Lang, G, Schreiber, A (2002) Temporal shifts of DNA-microsatellite allele profiles in roe deer (Capreolus capreolus L.) within three decades. J Zool Syst Evol Res 40:232–236

    Google Scholar 

  • Wehner, J, Mueller, H P, Orthwein, L (1991) Investigations on the genetic variability of fallow deer in North Rhine-Westphalia Germany. Z Jagdwiss 37:69–77

    Google Scholar 

  • Whitehead, GK (1993) The Whitehead Encyclopaedia of Deer. Swan Hill Press, Shrewsbury

    Google Scholar 

  • Wiehler, J, Tiedemann, R (1998) Phylogeography of the European roe deer Capreolus capreolus as revealed by sequence analysis of the mitochondrial control region. Acta Theriol Suppl 5:187–197

    Google Scholar 

  • Williams, CL, Serfass, TL, Cogan, R, Rhodes, OE (2002) Mic-rosatellite variation in the reintroduced Pennsylvania elk herd. Mol Ecol 11:1299–1310

    PubMed  CAS  Google Scholar 

  • Williams, ES, Young, S (1982) Spongiform encephalopathy of Rocky Mountain elk. J Wildl Dis 18:465–471

    PubMed  CAS  Google Scholar 

  • Wilson, GA, Strobeck, C, Wu, L, Coffin, JW (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol 6:697–699

    PubMed  CAS  Google Scholar 

  • Wilson, PJ, Grewal, S, Rodgers, A, Rempel, R, Saquet, J, Hris-tienko, H, Burrows, F, Peterson, R, White, BN (2003) Genetic variation and population structure of moose (Alces alces) at neutral and functional DNA loci. Can J Zool 81:670–683

    CAS  Google Scholar 

  • Wu, H, Wan, QH, Fang, SG, Zhang, SY (2005) Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies. Forensic Sci Int 148:101–105

    PubMed  CAS  Google Scholar 

  • Wu, HL, Fang, SG (2005) Mitochondrial DNA genetic diversity of black muntjac (Muntiacus crinifrons), an endangered species endemic to China. Biochem Genet 43:407–416

    PubMed  CAS  Google Scholar 

  • Xia, S, Zou, F, Bisong, Y (2006) Six microsatellite loci in forest musk deer, Moschus berezovskii. Mol Ecol Notes 6:113–115

    CAS  Google Scholar 

  • Xu, S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Yokohama, M, Yamazaki, T, Ishijima, Y (1995) Erythrocyte protein types and restriction endonuclease cleavage of mito-chondrial DNA in the Japanese sika deer (Cervus nippon yesoensis). J Agric Sci Tokyo 39:303–307

    CAS  Google Scholar 

  • Zachos, FE, Hartl, GB, Apollonio, M, Reutershan, T (2003) On the phylogeographic origin of the Corsican red deer (Cer-vus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm Biol 68:284–298

    Google Scholar 

  • Zachos, FE, Hmwe, SS, Hartl, GB (2006) Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreo-lus, Artiodactyla: Cervidae) populations from northern Germany. J Zool Sci 44:167–174

    Google Scholar 

  • Zeng, ZB, Liu, J, Stam, LF, Kao, CH, Mercer, JM, Laurie, CC (2000) Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154:299–310

    PubMed  CAS  Google Scholar 

  • Zou, F, Yue, B, Xu, L, Zhang, Y (2005) Isolation and characterization of microsatellite loci from forest musk deer ( Moschus berezovskii). Zoo Sci 22:593–598

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hall, R.J. (2009). Deer. In: Cockett, N.E., Kole, C. (eds) Genome Mapping and Genomics in Domestic Animals. Genome Mapping and Genomics in Animals, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73835-0_4

Download citation

Publish with us

Policies and ethics