Skip to main content

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 3))

Evidence from mitochondrial DNA indicates divergence of two cattle taxa, Bos indicus and Bos taurus, more than 100,000 years ago. These two taxa were likely domesticated independently some 10,000 years before present. Numerous bovine-specific genomic resources are now available or being developed, including full-length cDNA clones, long-oligo microarrays, high density SNP arrays, and the whole genome sequence. These genomic tools will facilitate defining molecular mechanisms underlying phenotypes of interest in both beef and dairy cattle. Causative mutations for a few economically important traits have been identified, such as milk yield, fat, and protein percentage in dairy cattle, and marbling in beef cattle, with more discoveries on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amarante MRV, Yang YP, Kata SR, Lopes CR, Womack JE (2000) RH maps of bovine chromosomes 15 and 29: conservation of human chromosomes 11 and 5. Mamm Genome 11:364–368

    PubMed  CAS  Google Scholar 

  • Arthur PF (1995) Double muscling in cattle: a review. Aust J Agri Res 46:1493–1515

    Google Scholar 

  • Arranz JJ, Coppieters W, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mezerm C, Riquet J, Simon P, Vanmanshoven P, Wagenaar D, Georges M (1998) A QTL affecting milk yield and composition traits maps to bovine chromosome 20: a confirmation. Anim Genet 29:107–115

    PubMed  CAS  Google Scholar 

  • Ashwell MS, Rexroad CE, Miller RH, VanRaden PM, Da Y (1997) Detection of loci affecting milk production and health traits in an elite U.S. Holstein population using microsat-ellite markers. Anim Genet 28:216–222

    CAS  Google Scholar 

  • Ashwell MS, Van Tassell CP (1999) Detection of putative loci affecting milk, health, and type traits in a US Holstein population using 70 microsatellite markers in a genome scan. J Dairy Sci 82:2497–2502

    PubMed  CAS  Google Scholar 

  • Ashwell MS, Van Tassell CP, Sonstegard TS (2001) A genome scan to identify quantitative trait loci affecting economically important traits in a US Holstein population. J Dairy Sci 84:2535–2542

    PubMed  CAS  Google Scholar 

  • Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, Ron M, Weller JI, Lewin HA (2004) Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J Dairy Sci 87:468–475

    PubMed  CAS  Google Scholar 

  • Bailey JF, Richards MB, Macauley VA, Colson IB, James IT, Bradley DG, Hedges REM, Sykes BC (1996) Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc R Soc Lond B 263:1467–1473

    CAS  Google Scholar 

  • Band MR, Larson JH, Rebeiz M, Green CA, Heyen DW, Donovan J, Windish R, Steining C, Mahyuddin P, Womack JE, Lewin HA (2000) An ordered comparative map of the cattle and human genomes. Genome Res 10:1359–1368

    PubMed  CAS  Google Scholar 

  • Barendse WJ (1999) Assessing lipid metabolism. Patent. International Publication Number: WO 99/23248. World International Property Organization

    Google Scholar 

  • Barendse W, Armitage SM, Ryan AM, Moore SS, Clayton D, Georges M, Womack JE, Hetzel J (1993) A genetic-map of DNA loci on bovine chromosome-1. Genomics 18:602–608

    PubMed  CAS  Google Scholar 

  • Barendse W, Vaiman D, Kemp SJ, Sugimoto Y, Armitage SM, Williams JL, Sun HS, Eggen A, Agaba M, Aleyasin SA, Band M, Bishop MD, Buitkamp J, Byrne K, Collins F, Cooper L, Coppettiers W, Denys B, Drinkwater RD, Easterday K, Elduque C, Ennis S, Erhardt G, Ferretti L, Flavin N, Gao Q, Georges M, Gurung R, Harlizius B, Hawkins G, Hetzel J, Hirano T, Hulme D, Jorgensen C, Kessler M, Kirkpatrick BW, Konfortov B, Kostia S, Kuhn C, Lenstra JA, Leveziel H, Lewin HA, Leyhe B, Lil L, Burriel IM, McGraw RA, Miller JR, Moody DE, Moore SS, Nakane S, Nijman IJ, Olsaker I, Pomp D, Rando A, Ron M, Shalom A, Teale AJ, Thieven U, Urquhart BGD, Vage DI, VandeWeghe A, Varvio S, Velmala R, Vikki J, Weikard R, Woodside C, Womack JE, Zanotti M, Zaragoza P (1997) A medium-density genetic linkage map of the bovine genome. Mamm Genom 8:21–28

    CAS  Google Scholar 

  • Bekman H, van Arendonk JAM (1993) Derivation of economic values for veal, beef and milk production traits using profit equations. Livest Prod Sci 34:35–56

    Google Scholar 

  • Bellinge RHS, Liberles DA, Iaschi SPA, O'Brien PA, Tay GK (2005) Myostatin and its implications on animal breeding: a review. Anim Genet 36:1–6

    PubMed  CAS  Google Scholar 

  • Bennewitz J, Reinsch N, Grohs C, Leveziel H, Malafosse A, Thom-sen H, Xu N, Looft C, Kuhn C, Brockmann GA, Schwerin M, Weimann C, Hiendleder S, Erhardt G, Medjugorac I, Russ I, Forster M, Brenig B, Reinhardt F, Reents R, Averdunk G, Blumel J, Boichard D, Kalm E (2003) Combined analysis of data from two granddaughter designs: a simple strategy for QTL confirmation and increasing experimental power in dairy cattle. Genet Sel Evol 35:319–338

    PubMed  CAS  Google Scholar 

  • Bennewitz J, Reinsch N, Paul S, Looft C, Kaupe B, Weimann C, Erhardt G, Thaller G, Kuhn C, Schwerin M, Thomsen H, Reinhardt F, Reents R, Kalm E (2004) The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14. J Dairy Sci 87:431–442

    PubMed  CAS  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SLF, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yo o JY, Beattie CW (1994) A genetic linkage map for cattle. Genetics 136:619–639

    PubMed  CAS  Google Scholar 

  • Blott S, Kim J, Moisio S, Schmidt-Kuntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Goerges M, Farnir F, Coppieters W (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253–266

    PubMed  CAS  Google Scholar 

  • Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, Rupp R, Amigues Y, Boscher MY, Leveziel H (2003) Detection of genes influencing economic traits in three French dairy cattle breeds. Genet Sel Evol 35:77–101

    PubMed  Google Scholar 

  • Boland M, Hill J, O'Connor P (2000) Changing the milk supply to increase cheese yield: the Kaikoura experience. In: Milk Composition. British Soc Anim Sci Occasional Publ 25:313–316

    Google Scholar 

  • Bradley DG, MacHugh DE, Cunningham P, Loftus RT (1996) Mitochondrial diversity and origins of African and European cattle. Proc Natl Acad Sci USA 93:5131–5135

    PubMed  CAS  Google Scholar 

  • Bradley DG, Loftus RT, Cunningham P, MacHugh DE (1998) Genetics and domestic cattle origins. Evol Anthro 6:79–86

    Google Scholar 

  • Buitkamp J, Kollers S, Durstewitz G, Fries R, Welzel K, Schafer K, Kellermann A, Lehrach H (2001) Construction and characterization of a gridded cattle BAC library. Anim Genet 31:347–351

    Google Scholar 

  • Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211

    Google Scholar 

  • Cai L, Taylor JF, Wing RA, Gallagher DS, Woo SS, Davis SK (1995) Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29:413–425

    PubMed  CAS  Google Scholar 

  • Casas E, Keele JW, Shackelford SD, Koohmaraie M, Sonstegard TS, Smith TPL, Kappes SM, Stone RT (1998) Association of the muscle hypertrophy locus with carcass traits in beef cattle. J Anim Sci 76:468–473

    PubMed  CAS  Google Scholar 

  • Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM, Kooh-maraie M (2000) Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J Anim Sci 78:560–569

    PubMed  CAS  Google Scholar 

  • Casas E, Shackelford SD, Keele JW, Koohmaraie M, Smith TPL, Stone RT (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. J Anim Sci 81:2976–2983

    PubMed  CAS  Google Scholar 

  • Casas E, Keele JW, Shackelford SD, Koohmaraie M, Stone RT (2004) Identification of quantitative trait loci for growth and carcass composition in cattle. Anim Genet 35:2–6

    PubMed  CAS  Google Scholar 

  • Cases S, Smith SJ, Zhang YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV (1998) Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacyl-glycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    PubMed  CAS  Google Scholar 

  • Chamberlain A, McParlan H, Balasingham T, Carrick M, Bowman P, Robinson N, Goddard M (2002) Mapping QTL affecting milk composition traits in dairy cattle using a complex pedigree. Proc 7th World Congr on Genet Appl Livest Prod, Montpellier, France, August 19–23, paper 09–08

    Google Scholar 

  • Charlier C, Coppieters W, Farnir F, Grobet L, Leroy PL, Michaux C, Mni M, Schwers A, VanManshoven P, Hanset R, Georges M (1995) The MH gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm Genom 6:788–792

    CAS  Google Scholar 

  • Chowdhary B P, Fronicke L, Gustavsson I, Scherthan H (1996) Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genom 7:297–302

    CAS  Google Scholar 

  • Clutton-Brock J (1993) The spread of domestic animals in Africa. In: Shaw T, Sinclair PJJ, Andah B, Okpoko A (eds) The Archaeology of Africa: Food, Metals, and Towns. Routledge, London, UK, pp 61–70

    Google Scholar 

  • Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, Lee JH, Drackley JK, Band MR, Hernande AG, Shani M, Lewin HA, Weller JI, Ron M (2005) Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res 15:936–944

    PubMed  CAS  Google Scholar 

  • Connor EE, Sonstegard TS, Ashwell MS, Bennett GL, Williams JL (2004) An expanded comparative map of bovine chromosome 27 targeting dairy form QTL regions. Anim Genet 35:265–269

    PubMed  CAS  Google Scholar 

  • Coppieters W, Riquet J, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (1998) A QTL with major effect on milk yield and composition maps to bovine Chromosome 14. Mamm Genom 9:540–544

    CAS  Google Scholar 

  • Cruickshank J, Dentine MR, Berger PJ, Kirkpatrick BW (2004) Evidence for quantitative trait loci affecting twinning rate in North American Holstein cattle. Anim Genet 35:206–212

    PubMed  CAS  Google Scholar 

  • Culley G (1807) Observations on Livestock, 4th edn. G. Wood-fall, London, UK

    Google Scholar 

  • Cunningham EP (1992) Selected Issues in Livestock Industry Development. The World Bank, Washington, DC, USA, pp 1–12

    Google Scholar 

  • Cunningham EP, McClintock AE (1974) Selection in dual-purpose populations: effect of beef crosses and cow replacement rates. Ann Genet Sel Anim 6:227–239

    Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed  CAS  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    PubMed  Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    PubMed  CAS  Google Scholar 

  • Dickerson GE, Künzi N, Cundiff LV, Koch RM, Arthaud VH, Gregory KE (1974) Selection criteria for efficient beef production. J Anim Sci 39:659–673

    Google Scholar 

  • Eggen A, Gautier M, Billaut A, Petit E, Hayes H, Laurent P, Urban C, Pfister-Genskow M, Eilertsen K, Bishop MD (2001) Construction and characterization of a bovine BAC library with four genome-equivalent coverage. Genet Sel Evol 33:543–548

    PubMed  CAS  Google Scholar 

  • Elo KT, Vikki J, deKoning DJ, Velmala RJ, Maki-Tanila AV (1999) A quantitative trait locus for live weight maps to bovine chromosome 23. Mamm Genom 10:831–835

    CAS  Google Scholar 

  • Everts-van der Wind A, Kata SR, Band MR, Rebeiz M, Larkin DM, Everts RE, Green CA, Liu L, Natarajan S, Goldammer T, Lee JH, McKay S, Womack JE, Lewin HA (2004) A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome Res 14:1424–1437

    Google Scholar 

  • Freyer G, Kuhn C, Weikard R, Zhang Q, Mayer M, Hoeschele I (2002) Multiple QTL on chromosome six in dairy cattle affecting yield and content traits. J Anim Breed Genet 119:69–82

    Google Scholar 

  • Freyer G, Kuhn C, Weikard R (2003a) Comparisons of different statistical approaches of QTL detection by evaluating results from a real dairy cattle data set. Archiv fur Tier-zucht 46:413–423

    CAS  Google Scholar 

  • Freyer G, Sorensen P, Kuhn C, Weikard R, Hoeschele I (2003b) Search for pleiotropic QTL on chromosome BTA6 affecting yield traits of milk production. J Dairy Sci 86:999–1008

    CAS  Google Scholar 

  • Freyer G, Sorensen P, Kuhn C, Weikard R (2004) Investigations in the character of QTL affecting negatively correlated milk traits. J Anim Breed Genet 121:40–51

    Google Scholar 

  • Fries R, Winter A (2002) Method of testing a mammal for its predisposition for fat content of milk and/or its predisposition for meat marbling. Intl Patent Appl No. PCT/EP 02/07520. World Intl Property Org

    Google Scholar 

  • Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet 46:319–330

    Google Scholar 

  • Georges M, Dietz AB, Mishra A, Nielsen D, Sargeant LS, Sorensen A, Steele MR, Zhao XY, Leipold H, Womack JE, Lathrop M (1993) Microsatellite mapping of the gene causing Weaver Disease in cattle will allow the study of and associated quantitative trait locus. Proc Natl Acad Sci USA 90: 1058–1062

    PubMed  CAS  Google Scholar 

  • Georges M, Nielsen D, MacKinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS Sorensen A, Steele MR, Zhao X, Womack JE, Hoeschele I (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139:907–920

    PubMed  CAS  Google Scholar 

  • Gibson JP (1994) Short-term gain at the expense of long-term response with selection of identified loci. Proc 5th World Congr Genet Appl Livest Prod 21:201–204

    Google Scholar 

  • Goddard ME (2003) Animal breeding in the (post-) genomic era. Anim Sci 76:353–365

    CAS  Google Scholar 

  • Gomez-Raya L, Gibson JP (1993) Within family selection at an otherwise unselected locus in dairy cattle. Genome 36:433–439

    PubMed  CAS  Google Scholar 

  • Gomez-Raya L, Klemetsdal G (1999) Two-stage selection strategies utilizing marker-quantitative trait locus information and individual performance. J Anim Sci 77:2008–2018

    PubMed  CAS  Google Scholar 

  • Gonda MG, Arias JA, Shook GE, Kirkpatrick BW (2004) Identification of an ovulation rate QTL in cattle on BTA14 using selective DNA pooling and interval mapping. Anim Genet 35:298–304

    PubMed  CAS  Google Scholar 

  • Goss SJ, Harris H (1975) New method for mapping genes in human chromosomes. Nature 255:680–684

    PubMed  CAS  Google Scholar 

  • Graser H-U, Nitter G, Barwick SA (1994) Evaluation of advanced industry breeding schemes for Australian beef cattle. II. Selection on combinations of growth, reproduction and carcase criteria. Aust J Agri Res 45:1657–1669

    Google Scholar 

  • Grigson C (1980) The craniology and relationships of four species of Bos. 5. Bos Indicus L. J Archeological Sci 7:3–32

    Google Scholar 

  • Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 12:222–231

    PubMed  CAS  Google Scholar 

  • Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frere JM, Coppieters W, Georges M (2004) Genetic and functional confirmation of the causality of theDGAT1 K232Aquantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci USA 101:2398–2403

    PubMed  CAS  Google Scholar 

  • Grobet L, Martin LJR, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massa-banda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    PubMed  CAS  Google Scholar 

  • Grupe S, Panicke L, Dietl G, Kuhn C, Gulard V, Schwerin M (1998) Identification of loci with significant effects on stillbirth and calving difficulties in Holstein cattle. Archiv. Anim Breed 41:151–158

    Google Scholar 

  • Grzybowski G (2003) Complex vertebral malformation and its implication for cattle breeding. Medycyna Weterynaryjna 59:107–111

    Google Scholar 

  • Hanotte O, Bradley DG, Ochleng JW, Verjee Y, Hill EW, Rege JE (2002) African Pastoralism: genetic imprints of origins and migrations. Science 296:336–339

    PubMed  CAS  Google Scholar 

  • Hanotte O, Ronin Y, Agaba M, Nilsson P, Gelhaus A, Horst-mann R, Sugimoto Y, Kemp S, Gibson J, Korol A, Soller M, Teale A (2003) Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N'Dama and susceptible East African Boran cattle. Proc Natl Acad Sci USA 100:7443–7448

    PubMed  CAS  Google Scholar 

  • Hanset R (1981) Double muscling in cattle — its inheritance — its meaning for beef production. Ann Med Vet 125:85–95

    Google Scholar 

  • Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet Cell Genet 71:168–174

    PubMed  CAS  Google Scholar 

  • Hazel LN (1934) The genetic basis for constructing selection indexes. Genetics 28:476–490

    Google Scholar 

  • Heuertz S, Hors-Cayla MC (1981) Cattle gene-mapping by somatic-cell hybridization study of 17 enzyme markers. Cytogenet Cell Genet 30:137–145

    PubMed  CAS  Google Scholar 

  • Heyen DW, Weller JI, Ron M, Band M, Beever JE, Feldmesser E, Da Y, Wiggans GR, VanRaden PM, Lewin HA (1999) A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol Genom 1:165–175

    CAS  Google Scholar 

  • Hiendleder S, Thomsen H, Reinsch N, Bennewitz J, Leyhe-Horn B, Looft C, Xu N, Medjugorac I, Russ I, Kuhn C, Brockmann GA, Blumel J, Brenig B, Reinhardt F, Reents R, Averdunk G, Schwerin M, Forster M, Kalm E, Erhardt G (2003) Mapping of QTL for body conformation and behavior in cattle. J Hered 94:496–506

    PubMed  Google Scholar 

  • Hill J P, Crawford RA, Boland MJ (2002) Milk and consumer health: a review of the evidence for a relationship between the consumption of beta-casein A1 with heart disease and insulin-dependent diabetes mellitus. Proc NZ Soc Anim Prod 62:111–114

    Google Scholar 

  • Hills D, Tracey S, Masabanda J, Fries R, Schalkwyk LC, Lehrach H, Miller JR, Williams LJ (1999) A bovine YAC library containing four- to five-fold genome equivalents. Mamm Genom 10:837–838

    CAS  Google Scholar 

  • Holmberg M, Andersson-Eklund L (2004) Quantitative trait loci affecting health traits in Swedish dairy cattle. J Dairy Sci 87:2653–2659

    PubMed  CAS  Google Scholar 

  • Huffman KL, Miller MF, Hoover LC, Wu CK, Brittin HC, Ramsey CB (1996) Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant. J Anim Sci 74:91–97

    PubMed  CAS  Google Scholar 

  • Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi Y, Hirano T, Itoh T, Watanabe T, Reed KM, Snelling WM, Kappes SM, Beattie CW, Bennett GL, Sugi-moto Y (2004) A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res 14:1987–1998

    PubMed  CAS  Google Scholar 

  • Itoh T, Takasuga A, Watanabe T, Sugimoto YT (2003) Mapping of 1400 expressed sequence tags in the bovine genome using a somatic cell hybrid panel. Anim Genet 34:362–370

    PubMed  CAS  Google Scholar 

  • Itoh T, Watanabe T, Ihara N, Mariani P, Beattie CW, Sugimoto Y, Takasuga A (2005) A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genom-ics 85:413–424

    CAS  Google Scholar 

  • Kambadur R, Sharma M, Smith TPL, Bass JJ (1997) Mutations in myostatin (GDF8) in double muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–915

    PubMed  CAS  Google Scholar 

  • Kappes SM, Keele JW, Stone RT, Sonstegard TS, Smith TPL, McGraw RA, LopezCorrales NL, Beattie CW (1997) A second-generation linkage map of the bovine genome. Genome Res 7:235–249

    PubMed  CAS  Google Scholar 

  • Kashi Y, Hallerman E, Soller M (1990) Marker assisted selection of candidate bulls for progeny testing programs. Anim Prod 51:63–74

    Google Scholar 

  • Keele JW, Shackelford SD, Kappes SM, Koohmaraie M, Stone RT (1999) A region on bovine chromosome 15 influences beef longissimus tenderness in steers. J Anim Sci 77:1364–1371

    PubMed  CAS  Google Scholar 

  • Khatib H, Heifetz E, Dekkers JCM (2005) Association of the protease inhibitor gene with production traits in Holstein dairy cattle. J Dairy Sci. 88:1208–1213

    PubMed  CAS  Google Scholar 

  • Khatkar MS, Thomson PC, Tammen I, Raadsma HW (2004) Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol 36:163–190

    PubMed  CAS  Google Scholar 

  • Kim J-J, Farnir F, Savell J, Taylor JF (2003a) Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross betweenBos taurus(Angus) andBos indicus(Brahman) cattle. J Anim Sci 81:1933–1942

    CAS  Google Scholar 

  • Kim JW, Park SI, Yeo JS (2003b) Linkage mapping and QTL on chromosome 6 in Hanwoo (Korean cattle). Asian-Aust J Anim Sci 16:1402–1405

    CAS  Google Scholar 

  • Kirkpatrick BW, Byla BM, Gregory KE (2000) Mapping quantitative trait loci for bovine ovulation rate. Mamm Genom 11:136–139

    CAS  Google Scholar 

  • Klungland H, Sabry A, Heringstad B, Olsen H, Gomez-Raya GL, Vage DI, Olsaker I, Odegard J, Klemetsdal G, Schulman N, Vikki J, Ruane J, Aasland M, Ronningen K, Lien S (2001)Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle. Mamm Genom 12:837–842

    Article  CAS  Google Scholar 

  • Koohmaraie M (1992) The role of Ca2+-dependent proteases (calpains) in postmortem proteolysis and meat tenderness. Biochemie 74:239–245

    CAS  Google Scholar 

  • Koohmaraie M (1994) Muscle proteinases and meat aging. Meat Sci 36:93–104

    CAS  Google Scholar 

  • Koohmaraie M (1996) Biochemical factors regulating the toughening and tenderization process of meat. Meat Sci 43:S193–S201

    Google Scholar 

  • Kuhn C, Weikard R, Goldammer T, Grupe S, Olsaker I, Schwerin M (1996) Isolation and application of chromosome 6 specific microsatellite markers for detection of QTL for milk-production traits in cattle. J Anim Breed Genet 113:355–362

    Google Scholar 

  • Kuhn C, Bennewitz J, Reinsch N, Xu N, Thomsen H, Looft C, Brockman GA, Schwerin M, Weimann C, Hiendieder S, Erhardt G, Medjugorac I, Forster M, Brenig B, Reinhardt F, Reents R, Russ I, Averdunk G, Blumel J, Kalm E (2003) Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J Dairy Sci 86:360–368

    PubMed  CAS  Google Scholar 

  • Kuhn C, Thaller G, Winter A, Bininda-Emonds ORP, Kaupe B, Erhardt G, Bennewitz J, Schwerin M, Fries R (2004) Evidence for multiple alleles at theDGAT1locus better explains a quantitative tip trait locus with major effect on milk fat content in cattle. Genetics 167:1873–1881

    PubMed  Google Scholar 

  • Kühn R, Ludt C, Manhart H, Peters J, Neumair E, Rottmann O (2005) Close genetic relationship of early Neolithic cattle from Ziegelberg (Freising, Germany) with modern breeds. J Anim Breed Genet 122 (Suppl 1):36–44

    PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Li C, Basarab J, Snelling WM, Benkel B, Kneeland J, Murdoch B, Hansen C, Moore SS (2004) Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a commercial line ofBos taurus. J Anim Sci 82:967–972

    PubMed  CAS  Google Scholar 

  • Lien S, Karlsen A, Klemetsdal G, Vage DI, Olsaker I, Klungland H, Aasland M, Heringstad B, Ruane J, Gomez-Raya L (2000) A primary scan of the bovine genome for quantitative trait loci affecting twinning rate. Mamm Genom 10:877–882

    Google Scholar 

  • Libert F, Lefort A, Okimoto R, Womack J, Georges M (1993) Construction of a bovine genomic library of large yeast artificial chromosome clones. Genomics 18:270–276

    PubMed  CAS  Google Scholar 

  • Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P (1994) Evidence for two independent domestications of cattle. Proc Natl Acad Sci USA 91:2757–2761

    PubMed  CAS  Google Scholar 

  • Looft C, Reinsch N, Karall-Albrecht C, Paul S, Brink M, Thomsen H, Brockmann G, Kuhn C, Schwerin M, Kalm E (2001) A mammary gland EST showing linkage disequilibrium to a milk production QTL on bovine chromosome 14. Mamm Genom 12:646–650

    CAS  Google Scholar 

  • Lush JL (1945) Animal Breeding Plans. Iowa State College Press, Ames, USA

    Google Scholar 

  • MacNeil MD, Cundiff LV, Dinkel CA, Koch RM (1984) Genetic correlations among sex-limited traits in beef cattle. J Anim Sci 58:1171–1180

    PubMed  CAS  Google Scholar 

  • MacNeil MD, Urick JJ, Newman S, Knapp BW (1992) Selection for postweaning growth in inbred Hereford cattle: The Fort Keogh, Montana Line 1 example. J Anim Sci 70:723–733

    PubMed  CAS  Google Scholar 

  • MacNeil MD, Newman S, Enns RM, Stewart-Smith J (1994) Relative economic values for Canadian beef production using specialized sire and dam lines. Can J Anim Sci 74:411–417

    Google Scholar 

  • MacNeil MD, Grosz MD (2002) Genome-wide scans for QTL affecting carcass traits in Hereford x composite double backcross populations. J Anim Sci 80:2316–2324

    PubMed  CAS  Google Scholar 

  • Mäki-Tanila A, de Koning D-J, Elo K, Moisio S, Velmala R, Vikki J (1998) Mapping of multiple quantitative trait loci by regression in half sib designs. Proc 6th World Congr Genet Appl Livest Prod, Armidale, Australia, January 11– 16, 26:269–272

    Google Scholar 

  • Mannen H, Kohno M, Nagata Y, Tsuji S, Bradley DG, Yeo JS, Nyamsamba D, Zagdsuren Y, Yokohama M, Nomura K, Amono T (2004) Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol Phytogenet Evol 32:539–544

    CAS  Google Scholar 

  • McPherron AC, Lee SJ (1997) Doubling muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    PubMed  CAS  Google Scholar 

  • Moore SS, Li C, Basarab J, Snelling WM, Kneeland J, Murdoch B, Hansen C, Benkel B (2003) Fine mapping of quantitative trait loci and assessment of positional candidate genes for backfat on bovine chromosome 14 in a commercial line of Bos taurus. J Anim Sci 81:1919–1925

    PubMed  CAS  Google Scholar 

  • Morris CA, Cullen NG, Hickey SM, Crawford AM, Hyndman DL, Bottema CDK, Pitchford WS (2001) Progress in DNA marker studies of beef carcass composition and meat quality in New Zealand and Australia. Proc Assoc Adv Anim Breed Genet, Queenstown, NZ 14:17–22

    Google Scholar 

  • Nicholas FW (2003) Online Mendelian Inheritance in Animals (OMIA): a comparative knowledgebase of genetic disorders and other familial traits in non-laboratory animals. Nucl Acids Res 31:275–277

    PubMed  CAS  Google Scholar 

  • Niebel E (1986) Economic evaluation of breeding objectives for milk and beef production in temperate zones. Proc 3rd World Congr Genet Appl Livest Prod, Lincoln, NE 9:18–32

    Google Scholar 

  • Norman HD, Dickinson FN (1971) An economic index for determining the relative value of milk and fat in predicted differences of bulls and cow index values of cows. ARS-44–223. Dairy Herd Improv Lett 47(1):1–34

    Google Scholar 

  • O'Brien SJ, Womack JE, Lyons LA, Moore KJ, Jenkins NA, Cope-land NG (1993) Anchored reference loci for comparative genome mapping in mammals. Nat Genet 3:103–12

    PubMed  Google Scholar 

  • Olsen HG, Gomez-Raya L, Vage DI, Olsaker I, Klungland H, Svendsen M, Adnoy T, Sabry A, Klemetsdal G, Schulman N, Kramer W, Thaller G, Ronningen K, Lien S (2002) A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J Dairy Sci 85:3124–3130

    PubMed  CAS  Google Scholar 

  • Olsen HG, Lien S, Svendsen M, Nilsen H, Roseth A, Opsal MA, Meuwissen THE (2004) Fine mapping of milk production QTL on BTA6 by combined linkage and linkage disequilibrium analysis. J Dairy Sci 87:690–698

    PubMed  CAS  Google Scholar 

  • Olsen HG, Lien S, Gautier M, Nilsen H, Roseth A, Berg PR, Sund-saasen KK, Svendsen M, Meuwissen THE (2005) Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 169:275–283

    PubMed  CAS  Google Scholar 

  • Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, Crawford AM, Wheeler TL, Koohmaraie M, Keele JW, Smith TPL (2002) Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci 80:3077–3085

    PubMed  CAS  Google Scholar 

  • Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL, Shack-elford SD, Koohmaraie M, White SN, Bennett GL, Keele JW, Dikeman ME, Smith TPL (2004) Association of markers in the bovineCAPN1gene with meat tenderness in large crossbred populations that sample influential industry sires. J Anim Sci 82:3474–3481

    PubMed  CAS  Google Scholar 

  • Ponzoni RW, Newman S (1989) Developing breeding objectives for Australian beef cattle production. Anim Prod 49:35–47

    Google Scholar 

  • Rexroad CE, Womack JE (1999) Parallel RH mapping of BTA1 with HSA3 and HSA21. Mamm Genom 10:1095–1097

    CAS  Google Scholar 

  • Riquet J, Coppieters W, Cambisano N, Arranz JJ, Berzi P, Davis SK, Grisart B, Farnir F, Karim L, Mni M, Simon P, Taylor JF, Vanmanshoven P, Wagenaar D, Womack JE, Georges M (1999) Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle. Proc Natl Acad Sci USA 96:9252–9257

    PubMed  CAS  Google Scholar 

  • Roberts RC (1979) Side effects of selection for growth in laboratory animals. Livest Prod Sci 6:93–104

    Google Scholar 

  • Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA (2002) Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. J Dairy Sci 85:3081–3091

    PubMed  CAS  Google Scholar 

  • Ron M, Kliger D, Feldmesser E, Seroussi E, Ezra E, Weller JI (2001) Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics 159:727–735

    PubMed  CAS  Google Scholar 

  • Ron M, Feldmesser E, Golik M, Tager-Cohen I, Kliger D, Reiss V, Domochovsky R, Alus O, Seroussi E, Erza E, Weller JI (2004) A complete genome scan of the Israeli Holstein population for quantitative trait loci by a daughter design. J Dairy Sci 87:476–490

    PubMed  CAS  Google Scholar 

  • Rothschild MF, Soller M (1997) Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13–22

    Google Scholar 

  • Rouse JE (1970) World Cattle. University of Oklahoma Press, Norman, USA

    Google Scholar 

  • Ruane J, Colleau JJ (1996) Marker assisted selection for a sex-limited character in a nucleus breeding population. J Dairy Sci 79:1666–1678

    PubMed  CAS  Google Scholar 

  • Saito S, Lui B, Yokoyama K (2004) Animal embryonic stem (ES) cells: self-renewal, pluropotency, trangenesis and nuclear transfer. Hum Cell 17:107–115

    PubMed  Google Scholar 

  • Schmutz SM, Buchanan FC, Plante Y, Winkelman-Sim DC, Aalhus J, Boles JA, Moker JS (2000) Mapping collagenase and a QTL to beef tenderness to cattle chromosome 29. Plant and Animal Genome VIII Conf, San Diego, CA, USA, p 143

    Google Scholar 

  • Schibler L, Roig A, Mahe MF, Save JC, Gautier M, Taourit S, Boi-chard D, Eggen A, Cribiu EP (2004) A first generation bovine BAC-based physical map. Genet Sel Evol 36:105–122

    PubMed  CAS  Google Scholar 

  • Schnabel RD, Kim JJ, Ashwell MS, Sonstegard TS, VanTassell C P, Connor EE, Taylor JF (2005) Fine mapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. Proc Natl Acad Sci USA 102:6896–6901

    PubMed  CAS  Google Scholar 

  • Schrooten C, Bovenhuis H, Coppieters W, Van Arendonk JAM (2000) Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. J Dairy Sci 83:795–806

    PubMed  CAS  Google Scholar 

  • Schrooten C, Bink MCAM, Bovenhuis H (2004) Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J Dairy Sci 87:3550–3560

    PubMed  CAS  Google Scholar 

  • Schulman NF, Dentine MR (2005) Linkage disequilibrium and selection response in two-stage marker assisted selection of dairy cattle over several generations. J Anim Breed Genet 122:110–116

    PubMed  CAS  Google Scholar 

  • Schulman NF, Moisio SM, de Koning DJ, Elo K, Maki-Tanila JA, Vilkki J (2002) QTL for health traits in Finnish Ayshire cattle. Proc 7th World Congr Genet Appl Livest Prod, Montpellier, France, August 19–23, paper 09–19

    Google Scholar 

  • Schulman NF, Viitala SM, de Koning DJ, Virta J, Maki-Tanila JA, Vilkki JH (2004) Quantitative trait loci for health traits in Finnish Ayrshire cattle. J Dairy Sci 87:443–449

    PubMed  CAS  Google Scholar 

  • Schuster DE, Kehrli ME, Ackermann MR, Gilbert RO (1992) Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci USA 89:9225–9229

    Google Scholar 

  • Schwenger B, Schober S, Simon D (1993) DUMPS cattle carry a point mutation in the uridine monophosphate synthase gene. Genomics 16:241–244

    PubMed  CAS  Google Scholar 

  • Schwerin M, Czernek-Schäfer D, Goldhammer T, Kata SR, Womack JE, Pareek R, Pareek C, Walawski K, Brunner RM (2003) Application of disease-associated differentially expressed genes — Mining for functional candidate genes for mastitis resistance in cattle. Genet Sel Evol 35 (Suppl 1): S19–S34

    PubMed  CAS  Google Scholar 

  • Short RE, MacNeil MD, Grosz MD, Gerrard DE, Grings EE (2002) Pleiotrophic effects in Hereford, Limousin, and Piedmontese F2 crossbred calves of genes controlling muscularity including the Piedmontese myostatin allele. J Anim Sci 80:1–11

    PubMed  CAS  Google Scholar 

  • Smith TPL, Alexander LJ, Sonstegard TS, Yo o J, Beattie CW, Broom MF (1996) Construction and characterization of a large insert bovine YAC library with five-fold genomic coverage. Mamm Genom 7:155–156

    CAS  Google Scholar 

  • Smith TPL, Lopez-Corrales NL, Kappes SM, Sonstegard TS (1997) Myostatin maps to the interval containing the bovine mh locus. Mamm Genom 8:742–744

    CAS  Google Scholar 

  • Smith TPL, Casas E, Rexroad CE III, Kappes SM, Keele JW (2000) Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J Anim Sci 78:2589–2594

    PubMed  CAS  Google Scholar 

  • Snelling WM, Gautier M, Keele JW, Smith TPL, Stone RT, Harhay GP, Bennett GL, Ihara N, Takasuga A, Takeda H, Sugimoto Y, Eggen A (2004) Integrating linkage and radiation hybrid mapping data for bovine chromosome 15. BMC Genomics 5: Art No 77

    Google Scholar 

  • Solinas-Toldo S, Lengauer C, Fries R (1995) Comparative genome map of human and cattle. Genomics 27:489–496

    PubMed  CAS  Google Scholar 

  • Soller M (1978) The use of loci associated with quantitative effects in dairy cattle improvement. Anim Prod 27:133–139

    Google Scholar 

  • Soller M, Beckmann JS (1983) Genetic polymorphisms in varietal identification and genetic improvement. Theor Appl Genet 67:25–33

    Google Scholar 

  • Soller M, Genizi A, Brody T (1976) On the power of experimental designs for detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor Appl Genet 47:35–39

    Google Scholar 

  • Spelman RJ, Coppieters W, Karim L, vanArendonk JAM, Bov-enhuis H (1996) Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics 144:1799–1807

    PubMed  CAS  Google Scholar 

  • Spelman RJ, Garrick D (1997) Utilization of marker assisted selection in a commercial dairy cow population. Livest Prod Sci 47:139–147

    Google Scholar 

  • Spelman RJ, Huisman AE, Singireddy SR, Coppieters W, Arranz J, Georges M, Garrick DJ (1999) Short communication: quantitative trait loci analysis on 17 nonproduction traits in the New Zealand dairy population. J Dairy Sci 82:2514–2516

    PubMed  CAS  Google Scholar 

  • Spelman RJ, Ford CA, McElhinney P, Gregory GC, Snell RG (2002) Characterization of the DGAT1 gene in the New Zealand dairy population. J Dairy Sci 85:3514–3517

    Article  PubMed  CAS  Google Scholar 

  • Stone RT, Keele JW, Shackelford SD, Kappes SM, Koohmaraie M (1999) A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J Anim Sci 77:1379–1384

    PubMed  CAS  Google Scholar 

  • Takeda H, Yamakuchi H, Ihara N, Hara K, Watanabe T, Sugi-moto Y, Oshiro T, Kishine H, Kano Y, Kohno K (1998) Construction of a bovine yeast artificial chromosome (YAC) library. Anim Genet 29:216–219

    PubMed  CAS  Google Scholar 

  • Thaller G, Kramer W, Winter A, Kaupe B, Erhardt G, Fries R (2003a) Effects of DGAT1 variants on milk production traits in German cattle breeds. J Anim Sci 81:1911–1918

    CAS  Google Scholar 

  • Thaller G, Kuhn C, Winter A, Ewald G, Bellmann O, Wegner J, Zuhlke H, Fries R (2003b) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34:354–357

    CAS  Google Scholar 

  • Thallman RM (2004) DNA testing and marker assisted selection. Proc Beef Improv Fed, Sioux Fall, SD, May 25–28, pp 20–25

    Google Scholar 

  • Thallman RM, Moser DW, Dressler EW, Totir LR, Fernando RL, Kachman SD, Rumph JM, Dikeman ME, Pollak EJ (2003) Carcass Merit Project: DNA marker validation: http://www.beefimprovement.org/GPW-CarcassMeritProject-Final.pdf

  • The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Google Scholar 

  • Tian XC, Kubota C, Enright B, Yang X (2003) Cloning animals by somatic cell nuclear transfer — biological factors. Reprod Biol Endocrinol 1:98

    PubMed  Google Scholar 

  • Troy CS, MacHugh DE, Bailey JF, Mcgee DA, Loftus RT, Cunningham P, Chamberlain AT, Sykes BC, Bradley DG (2001) Genetic evidence for Near-Eastern origins of European cattle. Nature 401:1088–1091

    Google Scholar 

  • USDA (2005) http://www.fas.usda.gov/psd/complete_tables/ downloaded 4 April (2005)

  • VanRaden PM (2004) Invited review: selection on net merit to improve lifetime profit. J Dairy Sci 87:3125–3131

    PubMed  CAS  Google Scholar 

  • Van Tassell CP, Sonstegard TS, Ashwell MS (2004) Mapping quantitative trait loci affecting dairy conformation to chromosome 27 in two Holstein grandsire families. J Dairy Sci 87:450–457

    PubMed  Google Scholar 

  • Velmala RJ, Vilkki HJ, Elo KT, de Koning DJ, Maki-Tanila AV (1999) A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle. Anim Genet 30:136–143

    PubMed  CAS  Google Scholar 

  • Viitala SM, Schulman NF, de Koning DJ, Elo K, Kinos R, Virta A, Virta J, Maki-Tanila A, Vikki JH (2003) Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J Dairy Sci 86:1828–1836

    PubMed  CAS  Google Scholar 

  • Wall E, Brotherstone S, Woolliams JA, Banos G, Coffey MP (2003) Genetic evaluation of fertility using direct and correlated traits. J Dairy Sci 86:4093–4102

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Zhou J (2003) Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol 1:103

    PubMed  CAS  Google Scholar 

  • Weikard R, Kuhn C, Goldammer T, Freyer G, Schwerin M (2005) The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 21:1–13

    PubMed  CAS  Google Scholar 

  • Weller JI, Kashi Y, Soller M (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci 73:2525–2537

    Article  PubMed  CAS  Google Scholar 

  • Weller JI, Golik M, Seroussi E, Ezra E, Ron M (2003) Population-wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population. J Dairy Sci 86:2219–2227

    PubMed  CAS  Google Scholar 

  • Willham RL, Baker F, Wallace R (1993) Ideas into Action. University Printing Services, Oklahoma State Univ, Stillwater, USA

    Google Scholar 

  • Williams JL, Eggen A, Ferretti L, Farr CJ, Gautier M, Amati G, Ball G, Caramorr T, Critcher R, Costa S, Hextall P, Hills D, Jeulin A, Kiguwa SL, Ross O, Smith AL, Saunier K, Urquhart B, Waddington D (2002) A bovine whole-genome radiation hybrid panel and outline map. Mamm Genom 13:469–474

    CAS  Google Scholar 

  • Winter A, Alzinger A, Fries R (2004) Assessment of the gene content of the chromosomal regions flanking bovine DGAT1. Genomics 83:172–180

    PubMed  CAS  Google Scholar 

  • Winter A, Kramer W, Werner FAO, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R (2001) Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA 99:9300–9305

    Google Scholar 

  • Womack JE, Moll YD (1985) Gene-mapping in cattle — Extensive homology with the human map. Cytogenet Cell Genet 40:781–781

    Google Scholar 

  • Womack JE, Moll YD (1986) Gene map of the cow — Conservation of linkage with mouse and man. J Hered 77:2–7

    PubMed  CAS  Google Scholar 

  • Womack JE, Johnson JS, Owens EK, Rexroad CE III, Schläp-fer J, Yang Y-P (1997) A whole genome radiation hybrid panel for bovine genome mapping. Mamm Genom 8:854–856

    CAS  Google Scholar 

  • Yang YP, Womack JE (1998) Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res 8:731–736

    PubMed  CAS  Google Scholar 

  • Yang YP, Rexroad CE, Schlapfer J, Womack JE (1998) An integrated radiation hybrid map of bovine chromosome 19 and ordered comparative mapping with human chromosome 17. Genomics 48:93–99

    PubMed  CAS  Google Scholar 

  • Zhang C, de Koning DJ, Hernandez-Sanchez J, Haley CS, Williams JL, Wiener P (2004) Mapping of multiple quantitative trait loci affecting bovine spongiform encephalopathy. Genetics 167:1863–1872

    PubMed  CAS  Google Scholar 

  • Zhang Q, Boichard D, Hoeschele I, Ernst C, Eggen A, Murkve B, Pfister-Genskow M, Witte LA, Grignola FE, Uimari P, Thaller G, Bishop MD (1998) Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149:1959–1973

    PubMed  CAS  Google Scholar 

  • Zhu BL, Smith JA, Tracey SM, Konfortov BA, Welzel K, Schalk-wyk LC, Lehrach H, Kollers S, Masabanda J, Buitkamp J, Fries R, Williams JL, Miller JR (1999) A 5x genome coverage bovine BAC library: production, characterization, and distribution. Mamm Genom 10:706–709

    CAS  Google Scholar 

  • Zhuchenko AA, Korol AB, Andryushchenko VK (1979) Linkage between loci of quantitative characters and marker loci 1. Model Genetika 14:771–779

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. MacNeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

MacNeil, M.D., Reecy, J.M., Garrick, D.J. (2009). Cattle. In: Cockett, N.E., Kole, C. (eds) Genome Mapping and Genomics in Domestic Animals. Genome Mapping and Genomics in Animals, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73835-0_1

Download citation

Publish with us

Policies and ethics