Skip to main content

Hessian Fly

  • Chapter

Part of the book series: Genome Mapping Genomics Animals ((MAPPANIMAL,volume 1))

Abstract

The Hessian fly (Mayetiola destructor) is the world’s most important insect pest of wheat. It also belongs to one of the largest families of the Diptera, the gall midges (Cecidomyiidae), which includes a number of other agriculturally important beneficial and pest species. The genetics of the Hessian fly is representative of the family. It has several interesting characteristics: highly adapted plant interactions that culminate in plant gall formation, genomic imprinting, post-zygotic sex determination, germline-limited chromosomes, and useful polytene chromosomes. These characteristics are described and progress toward the positional cloning of Avirulence genes in the insect’s genome is reviewed. This work has culminated in the development of an FPC-based physical map of the genome that is firmly anchored to the polytene chromosomes of the insect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan RE, Heyne EG, Jones ET, Johnston CO (1959) Genetic analyses of ten sources of Hessian fly resistance, their interrelationships and association with leaf rust reaction in wheat. Kansas Agri Exp Stn Tech Bul 104:1–51

    Google Scholar 

  • Anderson KG, Harris MO (2006) Does R gene resistance to Hessian fly allow wheat to prevent plant growth effects associated with Hessian fly attack? J Econ Entomol 99:1842–1853

    Article  PubMed  CAS  Google Scholar 

  • Bantock CR (1970) Experiments on chromosome elimination in the gall midge, Mayetiola destructor. J Embryol Exp Morphol 24:257–286

    PubMed  CAS  Google Scholar 

  • Barnes HF (1956) Gall Midges of Economic Importance: Gall Midges of Cereal Crops. Crosby Lockwood, London

    Google Scholar 

  • Behura SK, Valicente FH, Rider SD, Chen MS, Jackson S, Stuart JJ (2004) A physically anchored genetic map and linkage to avirulence reveal recombination suppression over the proximal region of Hessian fly chromosome A2. Genetics 167:343–355

    Article  PubMed  CAS  Google Scholar 

  • Bentur JS, Pasalu LC, Sarma NP, Rao UP, Mishra B (2003) Gall midge resistance in rice: current status in India and future strategies. Directorate of Rice Research Paper Series 01, Hyderabad, India

    Google Scholar 

  • Bergh JC, Harris MO, Rose S (1990) Temporal patterns of Hessian fly, Mayetiola destructor, emergence and reproductive behavior. Ann Entomol Soc Am 83:998–1004

    Google Scholar 

  • Black WC, Hatchett JH, Evans BR, Krchma LJ (1996) A linkage map of seven allozyme loci in the Hessian fly. J Hered 87:446–481

    Google Scholar 

  • Briggle LW, Curtis BC (1987) Wheat worldwide. Agronomy 13:1–32

    Google Scholar 

  • Buntin GD, Chapin JW (1990) Biology of Hessian fly (Diptera: Cecidomyiidae) in the southeastern United States: geographic variation and temperature-dependent phenology. J Econ Entomol 83:1015–1024

    Google Scholar 

  • Buntin GD, Bruckner PL, Johnson JW, Foster JE (1990) Effectiveness of selected genes for Hessian fly resistance in wheat. J Agric Entomol 7:284–291

    Google Scholar 

  • Buntin GD, Ott SL, Johnson JW (1992) Integration of plant resistance, insecticides, and planting date for management of the Hessian fly (Diptera: Cecidomyiidae) in winter wheat. J Econ Entomol 85:530–538

    Google Scholar 

  • Caldwell RM, Cartwright WB, Compton LE (1946) Inheritance of Hessian fly resistance derived from W38 and durum P.I. 94587. J Am Soc Agron 38:398–409

    Google Scholar 

  • Cartwright WB, LaHue DW (1944) Testing wheats in the greenhouse for Hessian fly resistance. J Econ Entomol 37:385–387

    Google Scholar 

  • Chen MS, Fellers JP, Stuart JJ, Reese JC, Liu XM (2004) A group of unrelated cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. Insect Mol Biol 13:101–108

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Fellers JP, Zhu YC, Stuart JJ, Hulbert S, El-Bouhssini M, Liu X (2006) A super-family of genes coding for secreted salivary gland proteins from the Hessian fly, Mayetiola destructor. J Insect Sci 6:12

    Google Scholar 

  • Clayton-Smith J (2003) Genomic imprinting as a cause of disease. BMJ 327:1121–1122

    Article  PubMed  Google Scholar 

  • Conståncia M, Pickard B, Kelsey G, Reik W (1998) Imprinting mechanisms. Genome Res 8:881–900

    PubMed  Google Scholar 

  • Cox TS, Hatchett JH (1986) Genetic model for wheat/Hessian fly (Diptera: Cecidomyiidae) interaction: strategies for deployment of resistance genes in wheat cultivars. Environ Entomol 15:24–31

    Google Scholar 

  • Crouse HV (1960) The controlling element in sex chromosome behavior in Sciara. Genetics 45:1429–1443

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Oshimura M, Barret JC (2002) Epigenetic mechanisms in human disease. Cancer Res 62:6784–6787

    PubMed  CAS  Google Scholar 

  • Fitch A (1846) The Hessian Fly, Its History, Character, Transformation, and Habits. State Agric Soc, Albany, New York

    Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Formusoh ES, Hatchett JH, Black WC IV, Stuart JJ (1996) Sex-linked inheritance of virulence against wheat resistance gene H9 in the Hessian fly (Diptera: Cecidomyiidae). Ann Entomol Soc Am 89:428–434

    Google Scholar 

  • Foster JE, Gallun RL (1972) Populations of the eastern races of the Hessian fly controlled by release of the dominant avirulent great plains race. Ann Entomol Soc Am 65:750–754

    Google Scholar 

  • Friedrich M, Tautz D (1997) Evolution and phylogeny of the Diptera: a molecular phylogenetic analysis using 28S rDNA sequences. Syst Biol 46:674–698

    Article  PubMed  CAS  Google Scholar 

  • Gagne RJ (1989) The Plant-feeding Gall Midges of North America. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Gagne RJ (1994) The Gall Midges of the Neotropical Region. Comstock, Ithaca, NY

    Google Scholar 

  • Gallun RL (1977) Genetic basis of Hessian fly epidemics. Ann N Y Acad Sci 287:222–229

    Article  Google Scholar 

  • Gallun RL (1978) Genetics of biotypes B and C of the Hessian fly. Ann Entomol Soc Am 71:481–486

    Google Scholar 

  • Gallun RL, Hatchett JH (1969) Genetic evidence of elimination of chromosomes in the Hessian fly. Ann Entomol Soc Am 62:1095–1101

    Google Scholar 

  • Gallun RL, Deay HO, Cartwright WB (1961) Four races of Hessian fly selected and developed from an Indiana population. Purdue Agric Res Stn Bull 732:1–8

    Google Scholar 

  • Gould F (1986) Simulation models for predicting durability of insect-resistant germplasm: Hessian fly (Diptera: Cecidomyiidae)-resistant winter wheat. Environ Entomol 15:11–23

    Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  PubMed  CAS  Google Scholar 

  • Harris MO, Rose S (1989) Temporal changes in the egglaying behavior of the Hessian fly, Mayetiola destructor. Entomol Exp Appl 53:17–29

    Article  Google Scholar 

  • Harris MO, Rose S (1990) Chemical, color and tactile cues influence egglaying behavior of the Hessian fly. Environ Entomol 19:303–308

    Google Scholar 

  • Harris MO, Sandanayake M, Griffin W (2001) Oviposition preferences of the Hessian fly and their consequences for the survival and reproductive potential of offspring. Ecol Entomol 26:1–14

    Article  Google Scholar 

  • Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O (2003) Grasses and gall midges: plant defense and insect adaptation. Annu Rev Entomol 48:549–577

    Article  PubMed  CAS  Google Scholar 

  • Harris MO, Freeman TP, Rohfritsch O, Anderson KG, Payne SA, Moore JA (2006) Hessian fly larvae induce a nutritive tissue during compatible interactions with wheat. Ann Entomol Soc Am 99:305–316

    Article  Google Scholar 

  • Hatchett JH, Gallun RL (1970) Genetics of the ability of the Hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann Entomol Soc Am 63:1400–1407

    Google Scholar 

  • Hatchett JH, Starks KJ, Webster JA (1987) Insect and mite pests of wheat. In: Heyne EG (ed) Wheat and Wheat Improvement. Am Soc Agron, Madison, WI

    Google Scholar 

  • Horike S-I, Cai S, Miyano M, Cheng J-F, Kohwi-Shigematsu T (2004) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    PubMed  Google Scholar 

  • Hunter B (2001) Rage for Grain: Flour Milling in the Mid-Atlantic, 1750–1815, Chap 4. The seriously alarming Hessian fly. PhD Thesis, University of Delaware, p 50

    Google Scholar 

  • Jiang Y-H, Lev-Lehman E, Bressler J, Tsai T-F, Beaudet AL (1999) Genetics of Angelman syndrome. Am J Hum Genet 65:1–6

    Article  PubMed  CAS  Google Scholar 

  • Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13:581–585

    Article  PubMed  CAS  Google Scholar 

  • Kanno H, Harris MO (2000) Both chemical and physical features of grass leaves influence host selection by the Hessian fly. J Chem Ecol 26: 2335–2354

    Article  CAS  Google Scholar 

  • Liu XM, Fellers JP, Wilde GE, Stuart JJ, Chen MS (2004) Characterization of two genes expressed in the salivary glands of the Hessian fly [Mayetiola destructor (Say)]. J Insect Biochem Mol Biol 34:229–237

    Article  CAS  Google Scholar 

  • Lobo NF, Behura SK, Aggarwal R, Chen M-S, Hill CA, Collins FH, Stuart JJ (2006) Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13. BMC Genomics 7:7

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40:62–64

    Article  PubMed  CAS  Google Scholar 

  • Mamaev BM (1975) Evolution of gall forming insects: gall midges. Boston Spa The British Library, Wetherby, UK

    Google Scholar 

  • Martin-Sanchez JA, Gómez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, González-Belinchón C, López-Braña I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255

    PubMed  CAS  Google Scholar 

  • Metcalfe ME (1935) The germ cell cycle in Phytophaga destructor (Say). Q J Microsc Sci 4:585–606

    Google Scholar 

  • Metz CW (1938) Chromosome behavior, inheritance and sex determination in sciara. Am Nat 72:485–520

    Article  Google Scholar 

  • Morris BD, Foster SP, Harris MO (2000) Identification of 1-octacosanal and 6-methoxy-2-benzoxizolinone from wheat as oviposition stimulants for the Hessian fly, Mayetiola destructor. J Chem Ecol 26:859–873

    Article  CAS  Google Scholar 

  • Naber N, El Bouhssini M, Labhilili M, Udupa SM, Nachit MM, Baum M, Lhaloui S, Benslimane A, El Abbouyi H (2000) Genetic variation among populations of the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), in Morocco and Syria. Bull Entomol Res 90:245–252

    Article  PubMed  CAS  Google Scholar 

  • Naber N, El Bouhssini M, Lhaloui S (2003) Biotypes of Hessian fly (Diptera; Cecidomyiidae) in Morocco. J Appl Entomol 127:174–176

    Article  Google Scholar 

  • Painter RH (1930) The biological strains of Hessian fly. J Econ Entomol 23:322–326

    Google Scholar 

  • Painter RH (1951) Insect Resistance in Crop Plants. Macmillan, New York

    Google Scholar 

  • Painter TS (1966) The role of the E-chromosomes in Cecidomyiidae. Proc Natl Acad Sci Wash 56:853–855

    Article  CAS  Google Scholar 

  • Patterson FL, Shaner GE, Ohm HW, Foster JE (1990) A historical perspective for the establishment of research goals for wheat improvement. J Prod Agric 3:30–38

    Google Scholar 

  • Pauly PJ (2002) Fighting the Hessian fly. Environ Hist 7:385–507

    Google Scholar 

  • Ratcliffe RH, Hatchett JH (1997) Biology and genetics of the Hessian fly and resistance in wheat. In: Bondari K (ed) New Developments in Entomology. Research Signpost, Scientific Information Guild, Trivandurm, India, pp 47–56

    Google Scholar 

  • Ratcliffe RH, Safranski GG, Patterson FL, Ohm HW, Taylor PL (1994) Biotype status of Hessian fly (Diptera: Cecidomyiidae) populations from the eastern United States and their response to 14 Hessian fly resistance genes. J Econ Entomol 87:1113–1121

    Google Scholar 

  • Ratcliffe RH, Ohm HW, Patterson FL, Cambron SE, Safranski GG (1996) Response of resistance genes H9-H19 in wheat to Hessian fly (Diptera: Cecidomyiidae) laboratory biotypes and field populations from the eastern United States. J Econ Entomol 89:1309–1317

    Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Rider SD Jr, Sun W, Ratcliffe RH, Stuart JJ (2002) Chromosome landing near avirulence gene vH13 in the Hessian fly. Genome 45:812–822

    Article  PubMed  CAS  Google Scholar 

  • Sardesai N, Nemacheck JA, Subramanyam S, Williams CE (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet 111:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Schulte SJ, Rider SD, Hatchett JH, Stuart JJ (1999) Molecular genetic mapping of three X-linked avirulence genes, vH6, vH9 and vH13, in the Hessian fly. Genome 42:821–828

    Article  PubMed  CAS  Google Scholar 

  • Shands RG, Cartwright WB (1953) A fifth gene conditioning Hessian fly response in common wheat. Agron J 45:302–307

    Article  Google Scholar 

  • Shukle RH, Stuart JJ (1993) A novel morphological mutation in the Hessian fly, Mayetiola destructor. J Hered 84:229–232

    Google Scholar 

  • Shukle RH, Stuart JJ (1995) Physical mapping of DNA sequences in the Hessian fly, Mayetiola destructor. J Hered 86:1–5

    CAS  Google Scholar 

  • Soderlund C, Humphrey S, Dunhum A, French L (2000) Contigs built with fingerprints, markers and FPC V4.7. Genome Res 10:1772–1787

    Article  PubMed  CAS  Google Scholar 

  • Stuart JJ, Hatchett JH (1988) Cytogenetics of the Hessian fly, Mayetiola destructor (Say). II. Inheritance and behavior of somatic and germ-line-limited chromosomes. J Hered 79:190–199

    Google Scholar 

  • Stuart JJ, Hatchett JH (1991) Genetics of sex determination in the Hessian fly, Mayetiola destructor. J Hered 82:43–52

    Google Scholar 

  • Stuart JJ, Welso SG, Ratcliffe RH (1997) Induction and inheritance of chromosome rearrangements in the Hessian fly (Diptera: Cecidomyiidae). Ann Entomol Soc Am 90:480–486

    Google Scholar 

  • Stuart JJ, Schulte SJ, Hall PS, Mayer KM (1998) Genetic mapping of Hessian fly avirulence gene vH6 using bulked segregant analysis. Genome 41:702–708

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam S, Sardesai N, Puthoff DP, Meyer JM, Nemacheck JA, Gonzalo M, Williams CE (2005) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci 170:90–103

    Article  CAS  Google Scholar 

  • Temple IK, Shield JPH (2002) Transient neonatal diabetes, a disorder of imprinting. J Med Genet 39:872–875

    Article  PubMed  CAS  Google Scholar 

  • Weksberg R, Smith AC, Squire J, Sadowski P (2003) Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet 12:R61–R68

    Article  PubMed  CAS  Google Scholar 

  • Yeates DK, Wiegmann BM (1999) Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol 44:397–428

    Article  PubMed  CAS  Google Scholar 

  • Zantoko L, Shukle RH (1997) Genetics of virulence in the Hessian fly to resistance gene H13 in wheat. J Hered 88:120–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stuart, J., Chen, MS., Harris, M. (2008). Hessian Fly. In: Genome Mapping and Genomics in Arthropods. Genome Mapping Genomics Animals, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73833-6_7

Download citation

Publish with us

Policies and ethics