Skip to main content

Evolutionary Aspects of RNA Editing

  • Chapter
RNA Editing

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 20))

Abstract

RNA editing is the sequence alteration of RNA molecules by nucleotide insertion/deletion or conversion mechanisms. In this chapter, I describe how the different forms of RNA editing may have evolved from pre-existing activities. It appears that repeated and widespread independent evolution of RNA editing occurred. The diversity in origins seems to be mirrored in the range of possible functions of editing: (1) Multiple proteins could be encoded by one gene. Different editing patterns would generate several proteins from one gene. Conversion editing in vertebrate mRNAs seems to be an instance of such an adaptive function. (2) RNA editing could provide organisms with an extra level of regulation of gene expression, and indications for this function are seen in most RNA editing forms. (3) Editing could serve as a defence against viruses and transposons. This could be another role of editing of vertebrate mRNAs. (4) Editing might counteract mutations which have occurred in the genome. These could occur particularly in organellar genomes, when selective pressures are absent. This role may be the raison d’être of mitochondrial tRNA editing. (5) RNA editing could offer the possibility to retain ‘difficult’ coding sequences, and such a function might be performed by mitochondrial RNA editing in myxomycetes. (6) Last but not least, RNA editing could speed up evolution by creating higher amounts of genetic variation over a shorter period of time. For its function, this model relies heavily on an analogy with splicing, where the possibility of domain shuffling has been invoked as a functional advantage. All these explanations seem not to suffice for kinetoplastid panediting, the most complex and extensive form of RNA editing known. In this case, I propose that the original advantage was found in the gene fragmentation it entails, protecting against loss of temporarily non-expressed mt genes during periods of intense intraspecific competition. Present-day kinetoplastid editing, however, reflects the effects of a long history of opposing selective forces obscuring its evolutionary origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arts GJ, Benne R (1996) Mechanism and evolution of RNA editing in Kinetoplastida. Biochim Biophys Acta 1307:39–54.

    PubMed  Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–145.

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706.

    Article  PubMed  CAS  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846.

    Article  PubMed  CAS  Google Scholar 

  • Benne R (ed) (1993) RNA editing, the alteration of protein coding sequences of RNA. Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Benne R, van den Burg J, Brakenhoff JPJ, Sloof P, van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826.

    Article  PubMed  CAS  Google Scholar 

  • Bienen EJ, Saric M, Pollakis G, Grady RW, Clarkson AB Jr (1991) Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol Biochem Parasitol 45:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Bishop KN, Holmes RK, Sheehy AM, Malim MH (2004) APOBEC-mediated editing of viral RNA. Science 305:645.

    Article  PubMed  CAS  Google Scholar 

  • Blom D, de Haan A, van den Berg M, Sloof P, Jirku M, Lukeš J, Benne R (1998) RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res 26:1205–1213.

    Article  PubMed  CAS  Google Scholar 

  • Blom D, de Haan A, van den Burg J, van den Berg M, Sloof P, Jirku M, Lukeš J, Benne R (2000) Mitochondrial minicircles in the free-living bodonid Bodo saltans contain two gRNA gene cassettes and are not found in large networks. RNA 6:121–135.

    Article  PubMed  CAS  Google Scholar 

  • Blum B, Bakalara N, Simpson L (1990) A model for RNA editing in kinetoplast mitochondria: ‘guide’ RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Börner GV, Pääbo S (1996) Evolutionary fixation of RNA editing. Nature 383:225.

    Article  PubMed  Google Scholar 

  • Borst P (1991) Why kinetoplast DNA networks? Trends Genet 7:139–141.

    PubMed  CAS  Google Scholar 

  • Borst P, Rudenko G (1994) Antigenic variation in African trypanosomes. Science 264:1872–1873.

    Article  PubMed  CAS  Google Scholar 

  • Byrne EM, Gott JM (2004) Unexpectedly complex editing patterns at dinucleotide insertion sites in Physarum mitochondria. Mol Cell Biol 18:7821–7828.

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1997) Cell and genome coevolution: facultative anaerobiosis, glycosomes and kinetoplastan RNA editing. Trends Genet 13:6–9.

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Reyes J, Zhelonkina AG, Huang CE, Sollner-Webb B (2002) Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol Cell Biol 22:4652–4660.

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Reprint Penguin, London, UK.

    Google Scholar 

  • Davidson NO (1993) Apolipoprotein B mRNA editing: a key controlling element targeting fats to proper tissue. Ann Med 25:539–543.

    PubMed  CAS  Google Scholar 

  • Dawkins R (2004) The ancestor’s tale. Weidenfeld & Nicolson, London, UK.

    Google Scholar 

  • Feagin JE (2000) Mitochondrial genome diversity in parasites. Int J Parasitol 30:371–390.

    Article  PubMed  CAS  Google Scholar 

  • Feagin JE, Abraham JM, Stuart K (1988) Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53:413–422.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AP, Nelson K, Beverley SM (1993) Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci USA 90:11608–11612.

    Article  PubMed  CAS  Google Scholar 

  • Gerber AP, Keller W (2001) RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem 26:376–384.

    Article  CAS  Google Scholar 

  • Golden DE, Hajduk SL (2005) The 3ʹ-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA 11:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Gott JM, Visomirski LM, Hunter JL (1993) Substitutional and insertional RNA editing of the cytochrome c oxidase subunit 1 messenger RNA of Physarum polycephalum. J Biol Chem 268:25483–25486.

    PubMed  CAS  Google Scholar 

  • Grivell LA (1993) Plant mitochondria 1993–a personal overview. In: Brennicke A, Kück U (eds) Plant mitochondria. VCH Verlagsgesellschaft, Weinheim, pp 1–14.

    Google Scholar 

  • Hancock K, Hajduk SL (1990) The mitochondrial tRNAs of T. brucei are nuclear encoded. J Biol Chem 265:19208–19215.

    PubMed  CAS  Google Scholar 

  • Hannaert V, Bringaud F, Opperdoes FR, Michels PAM (2003) Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetopl Biol Dis 2:1–30.

    Article  Google Scholar 

  • Hanson MR (1996) Protein products of incompletely edited transcripts are detected in plant mitochondria. Plant Cell 8:1–3.

    Article  CAS  Google Scholar 

  • Hausmann S, Garcin D, Delenda C, Kolakofsky D (1999) The versatility of paramyxovirus RNA polymerase stuttering. J Virol 73:5568–5576.

    PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (2001) Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 20:1144–1152.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra RF (2005) Why sex is good. Nature 434:571–572.

    Article  PubMed  CAS  Google Scholar 

  • Hong M, Simpson L (2003) Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist 154:265–279.

    Article  PubMed  CAS  Google Scholar 

  • Horton TL, Landweber LF (2000) Evolution of four types of RNA editing in myxomycetes. RNA 6:1339–1346.

    Article  PubMed  CAS  Google Scholar 

  • Horton TL, Landweber LF (2002) Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr Opin Microbiol 5:620–626.

    Article  PubMed  CAS  Google Scholar 

  • Kapushoc ST, Alfonso JD, Rubio MA, Simpson L (2000) End processing precedes mitochondrial importation and editing of tRNAs in Leishmania tarentolae. J Biol Chem 275:37907–37914.

    Article  PubMed  CAS  Google Scholar 

  • Koslowsky DJ, Bhat GJ, Perrolaz AL, Feagin JE, Stuart K (1990) The MURF3 gene of T. brucei contains multiple domains of extensive editing and is homologous to a subunit of NADH dehydrogenase. Cell 62:901–911.

    Article  PubMed  CAS  Google Scholar 

  • Kung SS, Chen YC, Lin WH, Chen CC, Chow WY (2001) Q/R RNA editing of the AMPA receptor subunit 2 (GRIA2) transcript evolves no later than the appearance of cartilaginous fishes. FEBS Lett 509:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Laforest MJ, Roewer I, Lang BF (1997) Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG ‘stop’ codons recognized as leucine. Nucleic Acids Res 25:626–632.

    Article  PubMed  CAS  Google Scholar 

  • Laforest MJ, Bullerwell CE, Forget L, Lang BF (2004) Origin, evolution, and mechanism of 5L tRNA editing in chytridiomycete fungi. RNA 10:1191–1199.

    Article  PubMed  CAS  Google Scholar 

  • Landweber LF (1992) The evolution of RNA editing in kinetoplastid protozoa. BioSystems 28:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Landweber LF, Gilbert W (1993) RNA editing as a source of genetic variation. Nature 363:179–182.

    Article  PubMed  CAS  Google Scholar 

  • Landweber LF, Gilbert W (1994) Phylogenetic analysis of RNA editing: a primitive genetic phenomenon. Proc Natl Acad Sci USA 91:918–921.

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97:13738–13742.

    Article  PubMed  CAS  Google Scholar 

  • Leigh J, Lang BF (2004) Mitochondrial 3ʹ tRNA editing in the jakobid Seculamonas ecuaudoriensis: a novel mechanism and implications for tRNA processing. RNA 10:615–621.

    Article  PubMed  CAS  Google Scholar 

  • Levanon EY, Hallegger M, Kinar Y, Shemesh R, Djinovic-Carugo K, Rechevi G, Jantsch MF, Eisenberg E (2005) Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33(4):1162–1168.

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739.

    Article  PubMed  CAS  Google Scholar 

  • Lonergan KM, Gray MW (1993) Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science 259:812–816.

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Hanson MR (1994) A single homogenous form of ATP6 protein accumulates in petunia mitochondria despite the presence of differentially edited atp6 transcripts. Plant Cell 6:1955–1968.

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Hanson MR (1996) Fully edited and partially edited nad9 transcripts differ in size and both are associated with polysomes in potato mitochondria. Nucleic Acids Res 24:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Arts GJ, Van den Burg J, de Haan A, Opperdoes F, Sloof P, Benne R (1994) Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J 13:5086–5098.

    PubMed  Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730.

    Article  PubMed  CAS  Google Scholar 

  • Madison-Antenucci S, Grams J, Hajduk SL (2002) Editing machines: the complexities of trypanosome RNA editing. Cell 108:435–438.

    Article  PubMed  CAS  Google Scholar 

  • Marande W, Lukeš J, Burger G (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 4:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  • Maslov DA, Simpson L (1994) RNA editing and mitochondrial genomic organisation in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol 14:8174–8182.

    PubMed  CAS  Google Scholar 

  • Maslov DA, Sturm NR, Niner BM, Gruszynski ES, Peris M, Simpson L (1992) An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol Cell Biol 12:56–67.

    PubMed  CAS  Google Scholar 

  • Miller D, Mahendran R, Spottswood M, Ling M, Wang S, Yang N, Costandy H (1993) RNA editing in mitochondria of Physarum polycephalum. In: Benne R (ed) RNA editing, the alteration of protein coding sequences of RNA. Ellis Horwood, Chichester, UK, pp 87–103.

    Google Scholar 

  • Nolan DP, Voorheis HP (1992) The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem 209:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474.

    Article  PubMed  CAS  Google Scholar 

  • Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102:437–449.

    Article  PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL, Casey JL (1996) RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 380:454–456.

    Article  PubMed  CAS  Google Scholar 

  • Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J-M (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350.

    Article  PubMed  CAS  Google Scholar 

  • Schnaufer A, Ernst NL, Palazzo SS, O’Rear J, Salavati R, Stuart K (2003) Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 12:307–319.

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Martin J, Agabian N (1994) A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol Cell Biol 14:2317–2322.

    PubMed  CAS  Google Scholar 

  • Scott J (1995) A place in the world for RNA editing. Cell 81:833–836.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH (1996) The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 66:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Shaw JM, Feagin JE, Stuart K, Simpson L (1988) Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell 52:401–411.

    Article  Google Scholar 

  • Shields DC, Wolfe KH (1997) Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol 14:344–349.

    PubMed  CAS  Google Scholar 

  • Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 63:698–708.

    Article  PubMed  CAS  Google Scholar 

  • Simpson L, Maslov DA (1999) Evolution of the U-insertion/deletion RNA editing in mitochondria of kinetoplastid protozoa. Ann NY Acad Sci 870:190–205.

    Article  PubMed  CAS  Google Scholar 

  • Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA (2000) Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA 97:6986–6993.

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB, Lukeš J, Roger AJ (2002) The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083.

    PubMed  CAS  Google Scholar 

  • Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC (1996) The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 24:478–486.

    Article  PubMed  CAS  Google Scholar 

  • Sloof P, Benne R (1997) RNA editing in kinetoplastid parasites: what they do with U. Trends Microbiol 5:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Smith HC, Snowden MP (1996) Base-modification mRNA editing through deamination – the good, the bad and the unregulated. Trends Genet 12:418–424.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Speijer D (2006) Is kinetoplastid pan-editing the result of an evolutionary balancing act? IUBMB Life 58:91–96.

    Article  PubMed  CAS  Google Scholar 

  • Thiemann OH, Maslov DA, Simpson L (1994) Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J 13:5689–5700.

    PubMed  CAS  Google Scholar 

  • Tomita K, Ueda T, Watanabe K (1996) RNA editing in the acceptor stem of squid mitochondrial tRNATyr. Nucleic Acids Res 24:4987–4991.

    Article  PubMed  CAS  Google Scholar 

  • Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332.

    Article  PubMed  CAS  Google Scholar 

  • Turelli P, Trono D (2005) Editing at the crossroad of innate and adaptive immunity. Science 307:1061–1065.

    Article  PubMed  CAS  Google Scholar 

  • van der Spek H, Speijer D, Arts GJ, van den Burg J, van Steeg H, Sloof P, Benne R (1990) RNA editing in transcripts of the mitochondrial genes of the insect trypanosome Crithidia fasciculata. EMBO J 9:257–262.

    PubMed  Google Scholar 

  • van der Spek H, Arts GJ, Zwaal RR, van den Burg J, Sloof P, Benne R (1991) Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J 10:1217–1224.

    PubMed  Google Scholar 

  • Vanhamme L, Pays E, McCulloch R, Barry JD (2001) An update on antigenic variation in African trypanosomes. Trends Parasitol 17:338–343.

    Article  PubMed  CAS  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990) A stuttering model for paramyxovirus P mRNA editing. EMBO J 9:2017–2022.

    PubMed  CAS  Google Scholar 

  • Visomirski-Robic LM, Gott JM (1995) Accurate and efficient insertional RNA editing in isolated Physarum mitochondria. RNA 1:681–691.

    PubMed  CAS  Google Scholar 

  • Visomirski-Robic LM, Gott JM (1997) Insertional editing in isolated Physarum mitochondria is linked to RNA synthesis. RNA 3:821–837.

    PubMed  CAS  Google Scholar 

  • Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430.

    Article  PubMed  CAS  Google Scholar 

  • Yasuhari S, Simpson L (1996) Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA 2:1153–1160.

    Google Scholar 

  • Yokobori S, Pääbo S (1995a) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA 92:10432–10435.

    Article  PubMed  CAS  Google Scholar 

  • Yokobori S, Pääbo S (1995b) tRNA editing in metazoans. Nature 377:490.

    Article  PubMed  CAS  Google Scholar 

  • Yokobori S, Pääbo S (1997) Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA(Tyr). J Mol Biol 265:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Ziemann H (1898) Eine Methode der Doppelfärbung bei Flagellaten, Pilzen, Spirillen und Bakterien, sowie bei einigen Amöben. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 24:945–955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Speijer, D. (2008). Evolutionary Aspects of RNA Editing. In: Göringer, H.U. (eds) RNA Editing. Nucleic Acids and Molecular Biology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73787-2_10

Download citation

Publish with us

Policies and ethics