Skip to main content

Discharge of bulk solids

  • Chapter
Powders and Bulk Solids
  • 5259 Accesses

Abstract

For simple applications it can be sufficient that the bulk solid flows out freely from a hopper or a bin. Here, only the achievable maximum discharge rate is of interest. However, in most cases controlled discharge is desired so appropriate feeders are required. Most feeders are either conveyors being modified for the requirements of silo discharge, or special discharge devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, RL, Richards JC (1970) Principles of powder mechanics. Pergamon Press, Oxford, UK

    Google Scholar 

  2. Schwedes J (1968) Fließverhalten von Schüttgütern in Bunkern. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  3. Schulze D (1999) A theoretical model for the prediction of the gas pressure distribution in silos at filling and discharge, Proc. “Int. Symp. Reliable Flow of Particulate Solids”, Porsgrunn, Norway, pp 331–340

    Google Scholar 

  4. Johanson JR, Jenike AW (1971/72) The effect of the gaseous phase on pressures in a cylindrical silo. Powder Technology 5:133–145

    Article  Google Scholar 

  5. Murfitt PG, Bransby PL (1980) Deaeration of powders in hoppers. Powder Technol. 27:149–163

    Article  Google Scholar 

  6. Royal TA, Carson JW (1991) Fine powder flow phenomena in bins, hoppers and processing vessels. Bulk 2000, London

    Google Scholar 

  7. Rathbone T, Nedderman RM, Davidson JF (1987) Aeration, deaeration, and flooding of fine particles. Chem. Eng. Sci. 42:725–736

    Article  CAS  Google Scholar 

  8. Gu ZH, Arnold PC, McLean AG (1992) Modelling of air pressure distributions in mass flow bins. Powder Technol. 71:121–130

    Article  Google Scholar 

  9. Spink CD, Nedderman RM (1978) Gravity discharge rate of fine particles from hoppers. Powder Technol. 21:245–261

    Article  Google Scholar 

  10. Nedderman RM, Tüzün U, Savage SB, Houlby G (1982) The flow of granular materials. Chem. Engng. Sci. 37:1597–1609

    Article  CAS  Google Scholar 

  11. Hagen E (1852) Druck und Bewegung des trockenen Sandes. In: Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp 35–42

    Google Scholar 

  12. Beverloo WA, Leniger HA, van der Felde J (1961) The flow of granular solids through orifices. Chem. Engng. Sci. 15:260–269

    Article  CAS  Google Scholar 

  13. British Standards Institution (Ed) (1987) Draft design code for silos, bins, bunkers and hoppers. Published by BSI in association with the British Materials Handling Board

    Google Scholar 

  14. Woodcock CR, Mason JS (1987) Bulk Solids Handling. Leonard Hill, Glasgow and London

    Google Scholar 

  15. Schulze D, Schwedes J (1992) Tests on the application of discharge tubes. Bulk Solids Handling 12:35–39

    Google Scholar 

  16. Crewdson BJ, Ormond AL, Nedderman RM (1977) Air-impeded discharge of fine particies from a hopper. Powder Technol. 16:197–207.

    Article  Google Scholar 

  17. Gu ZH, Arnold PC, McLean AG (1993) Simplified model for predicting the particle flowrate from mass flow bins. Powder Technol. 74:153–158

    Article  CAS  Google Scholar 

  18. Gu ZH, Arnold PC, McLean AG (1992) Prediction of the flowrate of bulk solids from mass flow bins with conical hoppers. Powder Technol. 72:157–166

    Article  CAS  Google Scholar 

  19. Nedderman RM, Tüzün U, Thorpe RB (1983) The effect of interstitial air pressure gradients on the discharge from bins. Powder Technol. 35:69–81

    Article  CAS  Google Scholar 

  20. Scheibe M (1997) Die Fördercharakteristik einer Zellenradschleuse unter Berücksichtigung der Wechselwirkung von Silo und Austragorgan. Ph.D. thesis, Techn. Univ. Bergakademie Freiberg, Germany

    Google Scholar 

  21. Bruff W, Jenike AW (1967/68) A silo for ground anthracite. Powder Technol. 1:252–262.

    Article  Google Scholar 

  22. Sutton HM, Richmond RA (1973) Improving the storage conditions of fine powders by aeration. Trans. Instn. Chem. Engrs. 51:97–104

    CAS  Google Scholar 

  23. Johanson JR (1965) Method of calculating rate of discharge from hoppers and bins. Trans. Min. Engrs. AIME 232:69–80

    Google Scholar 

  24. Jochem K (1997) Belüftung als Austraghilfe für Silos. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  25. Zimmer W (2006) Luftkanonen und Luftinjektoren — Was ist der Unterschied? Schüttgut 12:262–268

    CAS  Google Scholar 

  26. Raabe T (1998) Wirkungsweise von Luftkanonen als Austraghilfe. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  27. Raabe T, Schwedes J (1997) Experimentelle Untersuchungen zum Einsatz von Luftkanonen als Austraghilfe. Schüttgut 3:21–27

    Google Scholar 

  28. Raabe T, Schwedes J (1998) On the operation of air blasters as discharge-aids — experimental investigations. Proc. “6th Int. Conf. on Bulk Materials Storage, Handling and Transportation”, Wollongong, Australia, pp 507–514

    Google Scholar 

  29. Terziovski A, Arnold PC (1990) On the effective sizing and placement of air blasters. Bulk Solids Handling 10:181–185

    Google Scholar 

  30. SAT GmbH, Weingarten (1988) Horizontal-Zellenradschleuse ROTOSTAR. Product brochure no 2003/06.88

    Google Scholar 

  31. Roberts AW (1984) Vibration of fine powders and its application. In: Fayed ME, Otten L (Eds) Handbook of Powder Science and Technology. Van Nostrand Reinhold Company Inc., New York

    Google Scholar 

  32. Schumacher W (1987) Zum Förderverhalten von Bunkerabzugsschnecken mit Vollblattwendeln. Ph.D. thesis, TH Aachen, Germany

    Google Scholar 

  33. Jenike AW (1964/1980) Storage and flow of solids. Bull. No. 123, 20th Printing, revised 1980. Engng. Exp. Station, Univ. of Utah, Salt Lake City.

    Google Scholar 

  34. Reisner W, v. Eisenhardt-Rothe M (1971) Silos und Bunker für die Schüttgutspeicherung. Trans Tech Publications, Clausthal-Zellerfeld, Germany

    Google Scholar 

  35. Haaker G, van Poppelen MP, Jongejan MP, Stokkers GJ (1993) Improvement of screw feeder geometry for better draw-down performance. Proc. Int. Symp. Reliable flow of Particulate Solids II, Oslo, Norway, pp 551–561.

    Google Scholar 

  36. Bates L (1969) Entrainment patterns of screw hopper dischargers. Trans ASME, Journ. of Engng. f. Industry 91:295–302.

    Google Scholar 

  37. Meyer HJ (1989) Experiences with coal bunkers and coal feeders. Bulk Solids Handling 9:27–31

    Google Scholar 

  38. Schulze D (1991) Untersuchungen zur gegenseitigen Beeinflussung von Silo und Austraggerät. Ph.D. thesis, Techn. Univ. Braunschweig, Germany

    Google Scholar 

  39. Rademacher FJC (1982) Reclaim power and geometry of bin interfaces in belt and apron feeders. Bulk Solids Handling 2:281/294

    Google Scholar 

  40. Marinelli J, Carson JW (1992) Use screw feeders effectively. Chemical Engineering Progress 88 (No. 12): 47–51

    CAS  Google Scholar 

  41. Krambrock W (1979) Lagern und Umschlagen von Schüttgütern in der Chemischen Industrie. Chem.-Ing.-Tech. 2:104–112

    Article  Google Scholar 

  42. Schulze D, Schwedes J (1990) Experimental investigation of silo stresses under consideration of the influence of hopper/feeder interface. Kona 8:134–144

    Google Scholar 

  43. Bridge DT, Carson JW (1987) How to design efficient screw and belt feeders for bulk solids. Powder and Bulk Solids 12th Annual Conf., Rosemont, IL, USA

    Google Scholar 

  44. Aumund Fördertechnik GmbH, Rheinberg (2006) Hopper discharge systems. Product brochure, www.aumund.de

    Google Scholar 

  45. Ramos CM (1987) Design of apron feeders. Bulk Solids Handling 7:815/825

    Google Scholar 

  46. Eisele S (1978) Diskontinuierliche Wägesysteme. In: Dosieren in der Kunststofftechnik, VDI-Verlag, Düsseldorf, Germany

    Google Scholar 

  47. Pajer G, Kuhnt H, Kurth F (1988) Stetigförderer. VEB Verlag Technik, Berlin

    Google Scholar 

  48. Funke H (1978) Mechanisches Fördern mit Gurt-, Schwing-und Schneckenfördern. In: Dosieren in der Kunststofftechnik. VDI-Verlag, Düsseldorf, Germany

    Google Scholar 

  49. Bules WS (1989) The care and feeding of a vibratory feeder. Bulk Solids Handling 9:209–210

    Google Scholar 

  50. Carroll PJ (1970) Hopper design with vibratory feeders. Chem. Engng. Progr. 66:44–49

    Google Scholar 

  51. Brabender Technologie KG, Duisburg, Germany (2006) The Brabender SiloTray Feeder. www.brabender-technologie.com

    Google Scholar 

  52. FCE Group — Materials Handling, Leven, Five, UK (2006) Hogan Bin Discharger. www.fcegroup.com

    Google Scholar 

  53. Matcon Group Ltd., Moreton-In-Marsh, Gloucestershire, UK (2006) Matcon silo/hopper discharger valves. www.matcon-cone.com

    Google Scholar 

  54. Hoppe H, Heep D, Storf R (1985) Modern rotary valve technology for various pneumatic conveying systems. Bulk Solids Handling 4:795–799

    Google Scholar 

  55. Al-Din N, Gunn DJ (1983) Metering of solids by a rotary valve feeder. Powder Technology 36:25–31.

    Article  Google Scholar 

  56. Hoppe H (1982) Discharge of finest-grained products from storage and conveying bins. Proc. Powtech, I. Chem. E. Symp. Ser., Bd. Nr. 69

    Google Scholar 

  57. Krambrock W (1978) Pneumatisches Fördern. In: Dosieren in der Kunststofftechnik, VDI-Verlag, Düsseldorf, Germany

    Google Scholar 

  58. Stamer W (1975) Pneumatische Fördereinrichtungen in Zementwerken und in der chemischen Industrie. Aufbereitungstechnik 4:171/176

    Google Scholar 

  59. Peter J (1997) Großraumsilos für die Zementindustrie — Freistehende kreiszylindrische Silos mit Zentralkegel. ZKG International 50:657

    Google Scholar 

  60. Peter J (1981) Der Zentralkegelsilo aus statisch-konstruktiver Sicht. ZKG International 34:647–654

    Google Scholar 

  61. Martens P (Ed) (1988) Silohandbuch. Verlag Ernst & Sohn, Berlin

    Google Scholar 

  62. Duda WH (1977) Cement Data Book. Bauverlag GmbH, Wiesbaden, Berlin

    Google Scholar 

  63. Lippold D, Harder J (2004) Analysis and design of silo walls. World Cement, 35:63–68

    Google Scholar 

  64. Kaldenhoff M, Schütte J (2004) Schäden an Silos mit großen Entleerungsexzentrizitäten. Bauingenieur 79:560–567

    Google Scholar 

  65. Aumund Fördertechnik GmbH, Rheinberg, Germany (2006) Centrex product brochure. www.aumund.de

    Google Scholar 

  66. Maschinenfabrik Meyer & Co, Püttlingen, Germany (2006) Extromat product brochure. www.meyco.net

    Google Scholar 

  67. Fink R (1988) Bunker and silo reclaiming units for handling highly cohesive and difficult bulk materials. Bulk Solids Handling 1:27/30

    Google Scholar 

  68. Fink R (1987) Bunker-und Siloaustragsgeräte für schwerfließende Schüttgüter. TIZ 5

    Google Scholar 

  69. Fink R (1987) REA-Gipsentsorgung für das Kraftwerk Weisweiler. TIZ 9

    Google Scholar 

  70. NEMA Engineering GmbH, Wiefelstede, Germany (2004) Information brochure. www.nema.de

    Google Scholar 

  71. Geroldinger GmbH & Co. KG, Sigharting, Austria (2006) Oszillomat. www.geroldinger.com

    Google Scholar 

  72. Agrichema Materialflusstechnik GmbH & Co. KG, Waldlaubersheim, Germany (2006) Rotostar. www.agrichema.de

    Google Scholar 

  73. Hignett CIW (1981) Silo dischargers for non free-flowing bulk materials. Bulk Solids Handling 1:427–428

    Google Scholar 

  74. Kelka W (1968) Bunker mit fahrbaren Austragschnecken für schwerfließende Schüttgüter. Fördern und Heben 18:805–807

    Google Scholar 

  75. Roberts AW (2006) Performance of orbiting screw reclaimers. Bulk Solids Handling 26:24–31

    Google Scholar 

  76. Khelil A (1998) Internal structures (ties and internals). In: Brown CJ, Nielsen J (Eds) Silos — fundamentals of theory, behaviour and design. E & FN Spon, London and New York, pp 443–451

    Google Scholar 

  77. VibraScrew Inc., Totowa, NJ, USA (2006) Bin activator product brochure. www.vibrascrewinc.com

    Google Scholar 

  78. Monitor Technologies, LLC., Elbum, IL, USA (2007) Bulletin 943. www.monitortech.com

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Discharge of bulk solids. In: Powders and Bulk Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73768-1_12

Download citation

Publish with us

Policies and ethics