Skip to main content

Introduction

  • Chapter
  • 631 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

In recent years, computer animation has been a highly active research topic and is widely applied in various fields such as movie special effects, advertisements, cartoon, computer games and computer simulation, etc. From a traditional perspective of view, researchers categorize computer animation techniques into the field of computer graphics; however, with the fast development of computer animation techniques and enrichment of animation producing facilities, computer animation is no longer restricted to traditional computer graphics category but rather refers to many research areas, such as image processing, digital signal processing, machine vision and artificial intelligence, etc., to become an interdisciplinary subject.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guenter B, Parent R. Computing the arc length of parametric curves. IEEE Computer Graphics and Applications, 10(3): 72–78, 1990.

    Article  Google Scholar 

  2. Watt A, Watt M. Advanced animation and rendering techniques. Addison-Wesley Publishing Company, 1992.

    Google Scholar 

  3. Steketee SN, Badler NI. Parametric keyframe interpolation incorporating kinetic adjustment and phrasing control. Computer Graphics, 19 (3): 255–262, 1985.

    Article  Google Scholar 

  4. Kochanek DHU, Bartels RH. Interpolating splines with local tension, continuity and bias control. Computer Graphics, 18(3): 245–254, 1984.

    Article  Google Scholar 

  5. Brotman LS, Netravali AN. Motion interpolation by optimal control. Computer Graphics, 22(4): 179–188, 1988.

    Article  Google Scholar 

  6. Shoemake K. Animating rotation with quaternion curves. Computer Graphics, 19(3). 245–254, 1985.

    Article  Google Scholar 

  7. Duff T. Splines in animation and modeling. In: SIGGRAPH’86, ACM Press, 1986.

    Google Scholar 

  8. Pletincks D. Quaternion calculus as a basic tool in computer graphics. The Visual Computer, 5: 2–13, 1989.

    Article  Google Scholar 

  9. Barr AH, Currin B, Gabriel S, Hughes JF. Smooth interpolation of orientations with angular velocity constraints using quaternions. Computer Graphics, 26(2): 313–320, 1992.

    Article  Google Scholar 

  10. Maiocchi R, Pernici B. Directing and animated scene with autonomous actors. The Visual Computer, 6: 359–371, 1990.

    Article  Google Scholar 

  11. Korein JU, Badler NI. Techniques for generating the goal-directed motion of articulated structures. IEEE Computer Graphics and Applications, 2(3): 71–81, 1982.

    Article  Google Scholar 

  12. Girard M, Maciejewski AA. Computational modeling for the computer animation of legged figures. Computer Graphics, 19(3): 263–270, 1985.

    Article  Google Scholar 

  13. Girard M. Interactive design of 3D computer-animated legged animal motion. IEEE Computer Graphics and Applications, 7(6): 39–51, 1987.

    Article  MathSciNet  Google Scholar 

  14. Isaacs PM, Cohen MF. Controlling dynamics simulation with kinematic constraints, behaviour functions and inverse dynamics. Computer Graphics, 21(4): 215–224, 1987.

    Article  Google Scholar 

  15. Boulic R, Thalmann NM, Thalmann D. A global human walking model with real-time kinematic personification. The Visual Computer, 6(6): 344–358, 1992.

    Article  Google Scholar 

  16. Philips CB, Badler NI. Interactive behaviour for bipedal articulated figures. Computer Graphics, 25(4): 359–362, 1991.

    Article  Google Scholar 

  17. Wilhelms J, Barsky BA. Using dynamics analysis for the animation of articulated bodies such as human and robots. In: Graphics Interface’85, pp. 97–104, Springer-Verlag, 1985.

    Google Scholar 

  18. Wilhelms J. Using dynamics analysis for animation of articulated bodies. IEEE Computer Graphics and Applications, 7(6): 12–27, 1987.

    Article  Google Scholar 

  19. Wilhelms J. Towards automatic motion control. IEEE Computer Graphics and Applications, 7(4): 11–22, 1987.

    Article  Google Scholar 

  20. Armstrong WW. Recursive solution to the equations of motion of an n-link manipulator. In: Proceedings of the Fifth World Congress on the Theory of Machines and Mechanisms. pp. 1343–1346, 1979.

    Google Scholar 

  21. Armstrong WW, Green MW. The dynamics of articulated rigid bodies for purposes of animation. The Visual Computer, 1: 231–240, 1985.

    Article  Google Scholar 

  22. Witkin A, Fleischer K, Barr AH. Energy constraints on parameterized models. Computer Graphics, 21(4): 225–232, 1987.

    Article  Google Scholar 

  23. Moore M, Wilhelms J. Collision detection and response for computer animation. Computer Graphics, 22(4): 289–298, 1988.

    Article  Google Scholar 

  24. Zeltzer D. Motor control techniques for figure animation. IEEE Computer Graphics and Applications, 2(9): 53–59, 1982.

    Article  Google Scholar 

  25. Bruderlin A, Calvert TW. Goal-directed, dynamics animation of human walking. Computer Graphics, 23(3): 233–242, 1989.

    Article  Google Scholar 

  26. Bruderlin A, Teo CG, Calvert TW. Procedural movement for articulated figure animation. In: Proc of CAD/Graphics’93, pp. 141–146, International Academic Publishers, 1993.

    Google Scholar 

  27. Boulic R, Thalmann D. Combined direct and inverse kinematic control for articulated figure motion editing. Computer Graphics Forum, 11(4): 189–202, 1992.

    Article  Google Scholar 

  28. Raibert MH, Hodgins JK. Animation of dynamic legged locomotion. Computer Graphics, 25(4): 249–358, 1991.

    Article  Google Scholar 

  29. McKenna M, Zelter D. Dynamic simulation of autonomous legged locomotion. Computer Graphics, 24(4): 29–38, 1990.

    Article  Google Scholar 

  30. Witkin A, Kass M. Spacetime constraints. Computer Graphics, 22 (4): 159–168, 1988.

    Article  Google Scholar 

  31. Cohen MF. Interactive spacetime control for animation. Computer Graphics, 26(2): 293–302, 1992.

    Article  Google Scholar 

  32. Liu Z, Gortler SJ, Cohen MF. Hierarchical spacetime control. Computer Graphics, 29(4): 35–42, 1994.

    Google Scholar 

  33. Ngo JT, Marks J. Spacetime constrained revisited. Computer Graphics, 27(4). 343–350, 1993.

    Google Scholar 

  34. Sims K. Evolving virtual creatures. Computer Graphics, 29(4): 15–22, 1994.

    MathSciNet  Google Scholar 

  35. Sturman DJ. A brief history of motion capture for computer character animation. Character motion system. In: SIGGRAPH’ 94, Course 9, ACM Press, 1994.

    Google Scholar 

  36. Calvert TW, Chapman J, Patla A. Aspects of the kinematic simulation of human movement. IEEE Computer Graphics and Applications, 2(9): 41–50, 1982.

    Article  Google Scholar 

  37. Ginsberg CM, Maxwell D. Graphical marionette. In: Proc. ACM SIGGRAPH/SIGART Workshop on Motion, pp. 172–179, ACM Press, 1983.

    Google Scholar 

  38. Robertson B. Mike, the talking head. Computer Graphics World, 11 (7): 15–17, 1988.

    Google Scholar 

  39. Wakers G. The story of Waldo C. Graphic. In: SIGGRAPH’89, pp. 65–79, ACM Press, 1989.

    Google Scholar 

  40. Walters G. Performance animation at PDI. In: SIGGRAPH’93, pp. 40–53, ACM Press, 1993.

    Google Scholar 

  41. Kleiser J. Character motion systems. In: SIGGRAPH’93, pp. 33–36, ACM Press, 1993.

    Google Scholar 

  42. Tardif H. Character animation in real time. In: SIGGRAPH Panel Proceedings, I: Reports from the Field, ACM Press, 1991.

    Google Scholar 

  43. Robertson B. Moving pictures. Computer Graphics World, 15(10): 38–44, 1992.

    Google Scholar 

  44. Bindiganavale RN. Building parameterized action representations from observation. Ph.D. thesis, University of Pennsylvania, 2000. [Appears as Technical Report MS-CIS-00-17].

    Google Scholar 

  45. Witkin A, Popovic Z. Motion warping. In: SIGGRAPH’95, pp. 105–108, ACM Press, 1995.

    Google Scholar 

  46. Bruderlin A, Williams L. Motion signal processing. In: SIG-GRAPH’95, pp. 97–104, ACM Press, 1995.

    Google Scholar 

  47. Choi KJ, Park SH, Ko HS. Processing motion capture data to achieve positional accuracy. Graphical Models Image Process, 61(5): 260–273, 1999.

    Article  Google Scholar 

  48. Choi KJ, Ko HS. On-line motion retargeting. Journal of Visualization and Computer Animation, 11: 223–243, 2000.

    Article  MATH  Google Scholar 

  49. Shin HJ, Lee J, Gleicher M, Shin SY. Computer puppetry: an importance-based approach. ACM Transactions on Graphics, 20(2): 67–94, 2001.

    Article  Google Scholar 

  50. Lee J, Shin SY. A hierarchical approach to interactive motion editing for human-like figures. In: SIGGRAPH’99, pp. 39–48, ACM Press, 1999.

    Google Scholar 

  51. Lee J, Shin SY. Multiresolution motion analysis and synthesis. Technical Report CS-TR-2000-149, Computer Science Department, KAIST, 2000.

    Google Scholar 

  52. Witkin A, Kass M. Spacetime constraints. Computer Graphics (SIGGRAPH’88), 22(1): 159–168, 1988.

    Article  Google Scholar 

  53. Cohen MF. Interactive spacetime control for animation. Computer Graphics (SIGGRAPH’92), 26(2): 293–302, 1992.

    Article  Google Scholar 

  54. Gleicher M, Litwinowicz P. Constraint-based motion adaptation. Journal of Visualization and Computer Animation, 9: 65–94, 1998.

    Article  Google Scholar 

  55. Gleicher M. Motion editing with spacetime constraints. In: 1997 Symposium on Interactive 3D Graphics, pp. 139–148, ACM Press, 1997.

    Google Scholar 

  56. Gleicher M. Retargeting motion to new characters. In: SIG-GRAPH’98, pp. 33–42, Addison Wesley, 1998.

    Google Scholar 

  57. Gleicher M. Motion path editing. In: SI3D 2001, pp. 195–202, ACM Press, 2001.

    Google Scholar 

  58. Popovic Z, Witkin A. Physically based motion transformation. In: SIGGRAPH’99, pp. 11–20, ACM Press, 1999.

    Google Scholar 

  59. Kovar L, Gleicher M, Pighin F. Motion graphs. In: SIGGRAPH’ 02, pp. 473–482, ACM Press, 2002.

    Google Scholar 

  60. Kovar L, Gleicher M. Flexible automatic motion blending with registration curves. In: SIGGRAPH’03, pp. 214–224, ACM Press, 2003.

    Google Scholar 

  61. Kovar L, Gleicher M. Automated extraction and parameterization of motions in large data sets. In: SIGGRAPH’04, pp. 559–568, ACM Press, 2004.

    Google Scholar 

  62. Brand ME, Hertzmann A. Style machines. In: SIGGRAPH 2000, pp. 183–192, ACM Press, 2000.

    Google Scholar 

  63. Hsu E, Pulli K, Popovic J. Style translation for human motion. ACM Transactions on Graphics, 24(3): 1082–1089, 2005.

    Article  Google Scholar 

  64. Grochow K, Martin SL, Hertzmann A, Popovic Z. Style-based inverse kinematics. In: SIGGRAPH’04, pp. 522–531, ACM Press, 2004.

    Google Scholar 

  65. Torresani L, Hackney P, Bregler C. Learning to synthesize motion styles. Snowbird Learning Workshop, 2006.

    Google Scholar 

  66. Park MJ, Shin SY. Example based motion cloning. Computer Animation and Virtual Worlds, 15: 245–257, 2004.

    Article  Google Scholar 

  67. Liu CK, Popovic Z. Synthesis of complex dynamic character motion from simple animation. In: SIGGRAPH’02, pp. 408–416, ACM Press, 2002.

    Google Scholar 

  68. Liu CK, Hertzmann A, Popovic Z. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics, 24(3): 1071–1081, 2005.

    Article  Google Scholar 

  69. Abe Y, Liu CK, Popovic Z. Momentum-based parameterization of dynamic character motion. Graphical Models, 68(2): 194–211, 2006.

    Article  MATH  Google Scholar 

  70. Sung M, Kovar L, Gleicher M. Fast and accurate goal-directed motion synthesis for crowds. In: 2005 SIGGRAPH/EuroGraphics Symposium on Computer Animation, pp. 291–300, ACM Press, 2005.

    Google Scholar 

  71. Treuille A, Cooper S, Popovic Z. Continuum Crowds. In: SIGGRAPH’ 06, pp. 1160–1168, ACM Press, 2006.

    Google Scholar 

  72. Shao W. Animating autonomous pedestrians. Ph. D. thesis, New York University, 2006.

    Google Scholar 

  73. Liu F, Zhuang Y, Luo Z, Pan Y. Group animation based on multiple autonomous agents. Chinese Journal of Computer Research and Development, 41(1): 104–110, 2004.

    Google Scholar 

  74. Musse SR, Thalmann D. Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics, 7(2): 152–164, 2001.

    Article  Google Scholar 

  75. Massive Software, Inc. 3D animation system for crowd-related visual effects, http://www, massivesoftware, com, 2005.

    Google Scholar 

  76. Lamarche F, Donikian S. Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Computer Graphics Forum, 23(3): 509–518, 2004.

    Article  Google Scholar 

  77. Sung M, Chenney S, Gleicher M. Scalable behaviors for crowd simulation. Computer Graphics Forum (EuroGraphics 2004), 23(3): 519–528, 2004.

    Article  Google Scholar 

  78. Choi MG, Lee L, Shin SY. Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Transactions on Graphics, 22(2): 182–203, 2003.

    Article  Google Scholar 

  79. Lau M, Kuffner J. Behavior planning for character animation. In: SIGGRAPH/EuroGraphics Symposium on Computer Animation, ACM Press, 2005.

    Google Scholar 

  80. Yamane K, Kuffner JJ, Hodgins JK. Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics (SIG-GRAPH’04), 23(3): 532–539, 2004.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Introduction. In: A Modern Approach to Intelligent Animation. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73760-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73760-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73759-9

  • Online ISBN: 978-3-540-73760-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics