Skip to main content

Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Enginee ((LNCSE,volume 58))

Principal manifolds are defined as lines or surfaces passing through “the middle” of data distribution. Linear principal manifolds (Principal Components Analysis) are routinely used for dimension reduction, noise filtering and data visualization. Recently, methods for constructing non-linear principal manifolds were proposed, including our elastic maps approach which is based on a physical analogy with elastic membranes. We have developed a general geometric framework for constructing “principal objects” of various dimensions and topologies with the simplest quadratic form of the smoothness penalty which allows very effective parallel implementations. Our approach is implemented in three programming languages (C++, Java and Delphi) with two graphical user interfaces (VidaExpert and ViMiDa applications). In this paper we overview the method of elastic maps and present in detail one of its major applications: the visualization of microarray data in bioinformatics. We show that the method of elastic maps outperforms linear PCA in terms of data approximation, representation of between-point distance structure, preservation of local point neighborhood and representing point classes in low-dimensional spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenberg L.: Carleman’s Formulas in Complex Analysis: Theory and Applica-tions. Mathematics and its Applications, 244. Kluwer (1993)

    Google Scholar 

  2. Banfield, J. D., Raftery, A. E.: Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. Journal of the American Statistical Association 87 (417), 7-16 (1992)

    Article  Google Scholar 

  3. Bishop, C. M., Svensén, M., and Williams, C. K. I.: GTM: The generative topo-graphic mapping. Neural Computation 10 (1), 215-234 (1998)

    Article  Google Scholar 

  4. Born, M. and Huang, K.: Dynamical theory of crystal lattices. Oxford Univer-sity Press (1954)

    MATH  Google Scholar 

  5. Cai, W., Shao, X., and Maigret, B.: Protein-ligand recognition using spherical harmonic molecular surfaces: towards a fast and efficient filter for large virtual throughput screening. J. Mol. Graph. Model. 20 (4), 313-328 (2002)

    Article  Google Scholar 

  6. Dergachev, V. A., Gorban, A. N., Rossiev, A. A., Karimova, L. M., Kuandykov, E. B., Makarenko, N. G., and Steier, P.: The filling of gaps in geophysical time series by artificial neural networks. Radiocarbon 43 2A, 365-371 (2001)

    Google Scholar 

  7. Dongarra, J., Lumsdaine, A., Pozo, R., and Remington, K.: A sparse matrix library in C++ for high performance architectures. In: Proceedings of the Second Object Oriented Numerics Conference, 214-218 (1994)

    Google Scholar 

  8. Dyrskjot, L., Thykjaer, T., Kruhoffer, M. et al.: Identifying distinct classes of bladder carcinoma using microarrays. Nat Genetics 33 (1), 90-96 (2003)

    Article  Google Scholar 

  9. Durbin, R. and Willshaw, D.: An analogue approach to the traveling salesman problem using an elastic net method. Nature 326 (6114), 689-691 (1987)

    Article  Google Scholar 

  10. Elmap: C++ package available online: http://www. ihes. fr/∼zinovyev/vidaexpert/elmap

  11. Erwin, E., Obermayer, K., and Schulten, K.: Self-organizing maps: ordering, convergence properties and energy functions. Biological Cybernetics 67, 47-55 (1992)

    Article  MATH  Google Scholar 

  12. Frećhet, M.: Les élements aléatoires de nature quelconque dans un espace dis-tancié. Ann. Inst. H. Poincaré 10, 215-310 (1948)

    Google Scholar 

  13. Gorban A. N. (ed. ): Methods of neuroinformatics (in Russian). Krasnoyarsk State University Press (1998)

    Google Scholar 

  14. Gorban, A. N., Karlin, I. V., and Zinovyev, A. Yu.: Invariant grids for reaction kinetics. Physica A 333, 106-154. (2004)

    Article  Google Scholar 

  15. Gorban, A. N., Karlin, I. V., and Zinovyev, A. Yu.: Constructive methods of invariant manifolds for kinetic problems. Phys. Reports 396 (4-6), 197-403 (2004) Preprint online: http://arxiv. org/abs/cond-mat/0311017.

    Google Scholar 

  16. Gorban, A. N., Pitenko, A. A., Zinov’ev, A. Y., and Wunsch, D. C.: Vizualization of any data using elastic map method. Smart Engineering System Design 11, 363-368 (2001)

    Google Scholar 

  17. Gorban, A. N. and Rossiev, A. A.: Neural network iterative method of principal curves for data with gaps. Journal of Computer and System Sciences International 38 (5), 825-831 (1999)

    MATH  Google Scholar 

  18. Gorban, A., Rossiev, A., Makarenko, N., Kuandykov, Y., and Dergachev, V.: Recovering data gaps through neural network methods. International Journal of Geomagnetism and Aeronomy 3 (2), 191-197 (2002)

    Google Scholar 

  19. Gorban, A. N., Rossiev, A. A., and Wunsch D. C.: Neural network modeling of data with gaps: method of principal curves, Carleman’s formula, and other. The talk was given at the USA-NIS Neurocomputing opportunities workshop, Washington DC, July 1999 (Associated with IJCNN’99).

    Google Scholar 

  20. Gorban, A. N. and Zinovyev, A. Yu.: Visualization of data by method of elastic maps and its applications in genomics, economics and sociology. Preprint of Institut des Hautes Etudes Scientiques, M/01/36, 2001. http://www. ihes. fr/PREPRINTS/M01/Resu/resu-M01-36. html

  21. Gorban, A. N. and Zinovyev, A. Yu.: Method of elastic maps and its applications in data visualization and data modeling. International Journal of Computing Anticipatory Systems, CHAOS 12, 353-369 (2001)

    Google Scholar 

  22. Gorban, A. N., Zinovyev, A. Yu., and Pitenko, A. A.: Visualization of data using method of elastic maps (in Russian). Informatsionnie technologii 6, 26-35 (2000)

    Google Scholar 

  23. Gorban, A. N., Zinovyev, A. Yu., and Pitenko, A. A.: Visualization of data. Method of elastic maps (in Russian). Neurocomputers 4, 19-30 (2002)

    Google Scholar 

  24. Gorban, A. N., Zinovyev, A. Yu., and Wunsch, D. C.: Application of the method of elastic maps in analysis of genetic texts. In: Proceedings of International Joint Conference on Neural Networks (IJCNN Portland, Oregon, July 20-24) (2003)

    Google Scholar 

  25. Gorban, A. and Zinovyev, A.: Elastic Principal Graphs and Manifolds and their Practical Applications. Computing 75, 359-379 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gorban, A. N. Sumner, N. R., and Zinovyev A. Y.: Topological grammars for data approximation. Applied Mathematics Letters 20 (2007) 382-386 (2006)

    MathSciNet  Google Scholar 

  27. Gusev, A.: Finite element mapping for spring network representations of the mechanics of solids. Phys. Rev. Lett. 93 (2), 034302 (2004)

    Article  Google Scholar 

  28. Hastie, T.: Principal curves and surfaces. PhD Thesis, Stanford University (1984)

    Google Scholar 

  29. Hastie, T. and Stuetzle, W.: Principal curves. Journal of the American Statistical Association 84 (406), 502-516 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zou, H. and Hastie, T.: Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, Part 2, 301-320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kaski, S., Kangas, J., and Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Computing Surveys, 1, 102-350 (1998)

    Google Scholar 

  32. Kendall, D. G.: A Survey of the Statistical Theory of Shape. Statistical Science, 4(2), 87-99 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59-69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kégl: Principal curves: learning, design, and applications. Ph. D. Thesis, Concordia University, Canada (1999)

    Google Scholar 

  35. Kégl, B. and Krzyzak, A.: Piecewise linear skeletonization using principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (1), 59-74 (2002)

    Article  Google Scholar 

  36. Kégl, B., Krzyzak, A., Linder, T., and Zeger, K.: A polygonal line algorithm for constructing principal curves. In: Neural Information Processing Systems 1998. MIT Press, 501-507 (1999)

    Google Scholar 

  37. Kégl, B., Krzyzak, A., Linder, T., and Zeger, K.: Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2), 281-297 (2000)

    Article  Google Scholar 

  38. LeBlanc, M. and Tibshirani R.: Adaptive principal surfaces. Journal of the American Statistical Association 89, 53-64 (1994)

    Article  MATH  Google Scholar 

  39. Leung, Y. F. and Cavalieri, D.: Fundamentals of cDNA microarray data analysis. Trends Genet. 19 (11), 649-659 (2003)

    Article  Google Scholar 

  40. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall, Boca Raton (2005)

    MATH  Google Scholar 

  41. Mulier, F. and Cherkassky, V.: Self-organization as an iterative kernel smoothing process. Neural Computation 7, 1165-1177 (1995)

    Article  Google Scholar 

  42. Oja, M., Kaski, S., and Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neural Computing Surveys, 3, 1-156 (2003)

    Google Scholar 

  43. Pearson K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine, series 6 (2), 559-572 (1901)

    Article  Google Scholar 

  44. Perou, C. M., Sorlie, T., Eisen, M. B. et al.: Molecular portraits of human breast tumours. Nature 406 (6797), 747-752 (2000)

    Article  Google Scholar 

  45. “Principal manifolds for data cartography and dimension reduction”, Leicester, UK, August 2006. A web-page with test microarrays datasets provided for par-ticipants of the workshop: http://www. ihes. fr/zinovyev/princmanif2006

  46. Ritter, H., Martinetz, T., and Schulten, K.: Neural Computation and Self-Organizing Maps: An Introduction. Addison-Wesley Reading, Massachusetts, 1992.

    MATH  Google Scholar 

  47. Ritter. H Parametrized self-organizing maps. In Proceedings ICANN’93 Interna-tional Conference on Artificial Neural Networks Amsterdam, 568-575. Springer (1993)

    Google Scholar 

  48. Roweis, S. and Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000), 2323-2326 (2000)

    Article  Google Scholar 

  49. Sayle, R. and Bissell, A.: RasMol: A Program for fast realistic rendering of molecular structures with shadows. In: Proceedings of the 10th Eurographics UK’92 Conference, University of Edinburgh, Scotland (1992)

    Google Scholar 

  50. Schölkopf, B., Smola, A. and Müller, K. -R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 (5), 1299-1319 (1998)

    Article  Google Scholar 

  51. Shyamsundar, R., Kim, Y. H., Higgins, J. P. et al.: A DNA microarray survey of gene expression in normal human tissues. Genome Biology 6 R22 (2005)

    Article  Google Scholar 

  52. Smola, A. J., Williamson, R. C., Mika, S., and Schölkopf B.: Regularized principal manifolds. EuroCOLT’99, Lecture Notes in Artificial Intelligence 1572, 214-229 (1999)

    Google Scholar 

  53. Smola, A. J., Mika, S., Schölkopf, B., and Williamson, R. C.: Regularized Prin-cipal Manifolds. Journal of Machine Learning Research 1, 179-209 (2001)

    Article  MATH  Google Scholar 

  54. Stanford, D. and Raftery, A. E.: Principal curve clustering with noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(6), 601-609 (2000)

    Article  Google Scholar 

  55. Tenenbaum, J. B., Silva, V. De, and Langford J. C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319-2323 (2000)

    Google Scholar 

  56. Van Gelder, A. and Wilhelms, J.: Simulation of elastic membranes and soft tissue with triangulated spring meshes. Technical Report: UCSC-CRL-97-12 (1997)

    Google Scholar 

  57. Verbeek, J. J., Vlassis, N., and Krose, B.: A k-segments algorithm for finding principal curves. Technical report (2000) (See also Pattern Recognition Letters, 23 (8), (2002) 1009-1017 (2002))

    Google Scholar 

  58. VidaExpert: Stand-alone application for multidimensional data visualization, available online: http://bioinfo. curie. fr/projects/vidaexpert

  59. VIMIDA: Java-applet for Visualisation of MultIdimensional DAta, available online: http://bioinfo-out. curie. fr/projects/vimida

  60. Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M. E., Yu, J. et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671-679 (2005)

    Google Scholar 

  61. Xie, H. and Qin, H.: A Physics-based framework for subdivision surface design with automatic rules control. In: Proceedings of the Tenth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2002), IEEE Press, 304-315 (2002)

    Google Scholar 

  62. Yin, H.: Data visualisation and manifold mapping using ViSOM. Neural Networks, 15, 1005-1016 (2002)

    Article  Google Scholar 

  63. Yin, H.: Nonlinear multidimensional data projection and visualisation. In: Lecture Notes in Computer Science, vol. 2690, 377-388 (2003)

    Google Scholar 

  64. Zinovyev A.: Visualization of Multidimensional Data. Krasnoyarsk State Uni-versity Press Publ. (2000)

    Google Scholar 

  65. Zinovyev, A. Yu., Gorban, A. N., and Popova, T. G.: Self-organizing approach for automated gene identification. Open Systems and Information Dynamics 10(4), 321-333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  66. Zinovyev, A. Yu., Pitenko, A. A., and Popova, T. G.: Practical applications of the method of elastic maps (in Russian). Neurocomputers 4, 31-39 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gorban, A.N., Zinovyev, A.Y. (2008). Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization. In: Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y. (eds) Principal Manifolds for Data Visualization and Dimension Reduction. Lecture Notes in Computational Science and Enginee, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73750-6_4

Download citation

Publish with us

Policies and ethics