Skip to main content

Automating Elementary Number-Theoretic Proofs Using Gröbner Bases

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4603))

Abstract

We present a uniform algorithm for proving automatically a fairly wide class of elementary facts connected with integer divisibility. The assertions that can be handled are those with a limited quantifier structure involving addition, multiplication and certain number-theoretic predicates such as ‘divisible by’, ‘congruent’ and ‘coprime’; one notable example in this class is the Chinese Remainder Theorem (for a specific number of moduli). The method is based on a reduction to ideal membership assertions that are then solved using Gröbner bases. As well as illustrating the usefulness of the procedure on examples, and considering some extensions, we prove a limited form of completeness for properties that hold in all rings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschenbrenner, M.: Ideal membership in polynomial rings over the integers. Journal of the American Mathematical Society 17, 407–441 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, A.: A Concise Introduction to the Theory of Numbers. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  3. Beltyokov, A.P.: Decidability of the universal theory of natural numbers with addition and divisibility (Russian). Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR 40, 127–130 (1974), English translation in Journal Of Mathematical Sciences 14, 1436–1444 (1980)

    Google Scholar 

  4. Boyer, R.S., Moore, J.S.: A Computational Logic. In: ACM Monograph Series, Academic Press, San Diego (1979)

    Google Scholar 

  5. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Mathematisches Institut der Universität Innsbruck (1965), English translation to appear in Journal of Symbolic Computation (2006)

    Google Scholar 

  6. Bundy, A.: A science of reasoning. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic: Essays in Honor of Alan Robinson, pp. 178–198. MIT Press, Cambridge (1991)

    Google Scholar 

  7. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Melzer, B., Michie, D. (eds.) Machine Intelligence 7, pp. 91–99. Elsevier, Amsterdam (1972)

    Google Scholar 

  8. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  9. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Hodges, W.: Logical features of Horn clauses. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming (logical foundations), vol. 1, pp. 449–503. Oxford University Press, Oxford (1993)

    Google Scholar 

  11. Kandri-Rody, A., Kapur, D.: Algorithms for computing Gröbner bases of polynomial ideals over various Euclidean rings. In: Fitch, J. (ed.) EUROSAM 1984. LNCS, vol. 174, pp. 195–206. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  12. Kandri-Rody, A., Kapur, D., Narendran, P.: An ideal-theoretic approach to word problems and unification problems over finitely presented commutative algebras. In: Jouannaud, J.-P. (ed.) Rewriting Techniques and Applications. LNCS, vol. 202, pp. 345–364. Springer, Heidelberg (1985)

    Google Scholar 

  13. Kreisel, G., Krivine, J.-L.: Elements of mathematical logic: model theory. Studies in Logic and the Foundations of Mathematics. North-Holland, revised second edition, 1971. First edition 1967. Translation of the French ‘Eléments de logique mathématique, théorie des modeles’ published by Dunod, Paris (1964)

    Google Scholar 

  14. Lifschitz, V.: Semantical completeness theorems in logic and algebra. Proceedings of the American Mathematical Society 79, 89–96 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lipshitz, L.: The Diophantine problem for addition and divisibility. Transactions of the American Mathematical Society 235, 271–283 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Matiyasevich, Y.V.: Enumerable sets are Diophantine. Soviet Mathematics Doklady 11, 354–358 (1970)

    MATH  Google Scholar 

  17. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen In welchem die Addition als einzige Operation hervortritt. In: Sprawozdanie z I Kongresu metematyków slowiańskich, Warszawa 1929, pp. 92–101, 395. Warsaw, 1930. Annotated English version by [20]

    Google Scholar 

  18. Robinson, J.: Definability and decision problems in arithmetic. Journal of Symbolic Logic. Author’s PhD thesis 14, 98–114 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  19. Simmons, H.: The solution of a decision problem for several classes of rings. Pacific Journal of Mathematics 34, 547–557 (1970)

    MATH  MathSciNet  Google Scholar 

  20. Stansifer, R.: Presburger’s article on integer arithmetic: Remarks and translation. Technical Report CORNELLCS:TR84-639, Cornell University Computer Science Department (1984)

    Google Scholar 

  21. Weispfenning, V., Becker, T.: Groebner bases: a computational approach to commutative algebra. In: Graduate Texts in Mathematics, Springer, Heidelberg (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Pfenning

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, J. (2007). Automating Elementary Number-Theoretic Proofs Using Gröbner Bases. In: Pfenning, F. (eds) Automated Deduction – CADE-21. CADE 2007. Lecture Notes in Computer Science(), vol 4603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73595-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73595-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73594-6

  • Online ISBN: 978-3-540-73595-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics