Advertisement

The Vistula Lagoon

  • B. Chubarenko
  • P. Margoński
Part of the Ecological Studies book series (ECOLSTUD, volume 197)

The Vistula Lagoon is located at the southern coast of the Baltic Sea (Fig. 8.1). It stretches along the shore for ca. 91 km. The width of the lagoon varies between 2 and 11 km, and the water volume and surface area are 2.3 km3 and 838 km2, respectively. The average lagoon depth is 2.7 m; the maximum depth excluding the artificially dredged navigable channel is 5.2 m. The state border between the Kaliningrad region (Russia) and Poland divides the lagoon into two parts, which account for 64% and 36% of the water volume and 56.2% and 43.8% of the lagoon area, respectively. The length of the lagoon coastal line is estimated as 270 km (Poland 111 km, Russia 159 km). The single Nasypnoi Island is in the deepest part of the lagoon (Lazarenko and Majewski 1971).

Keywords

Coastal Lagoon Wind Wave Polish Part Trophic State Index Vistula Lagoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamkiewicz-Chojnacka B, Leśniak D (1985) Evaluation of biomass of the rotifers (Rotatoria) in salty water of the Vistula Bay in 1975, 1977 and 1978 (in Polish). Studia i Materiały Oceanologiczne PAN, Biologia Morza 46:273–308Google Scholar
  2. Adamkiewicz-Chojnacka B, Majerski J (1980) Zooplankton of the Vistula Bay during summer season (in Polish). Zesz Nauk ART Olsztynie 10:85–94Google Scholar
  3. Adamkiewicz-Chojnacka B, Radwan S (1989) Vertical distribution of Rotatoria biomass in brackish waters of the Vistula Lagoon (in Polish). Pol Arch Hydrobiol 36:105–111Google Scholar
  4. Adamkiewicz-Chojnacka B, Różańska Z (1990) Seasonal variations of the biomass of Copepoda and Rotatoria: permanent components of the zooplankton in the Vistula Lagoon. Limnologica (Berlin) 20:71–73Google Scholar
  5. Aleksandrov SV (2004) Primary production in the Vistula Lagoon. In: Alimov AF, Ivanova MB (eds) Regularities of hydrobiological regime in water bodies of different types (in Russian). Moscow: “Scientific World” pp 139–141Google Scholar
  6. Andrulewicz E, Chubarenko B (2004) Case study: Vistula Lagoon (Poland/Russia)–transboundary management problems and an example of modelling for decision making. In: Gonenc IE, Wolflin J (eds) Coastal lagoons: ecosystem processes and modelling for sustainable use and developments. CRC, Boca Raton, pp 423–439Google Scholar
  7. Andrulewicz E, Witek Z (2002) Anthropogenic pressure and environmental effects on the Gulf of Gdansk: recent management efforts. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems. Springer, Berlin, pp 119–139Google Scholar
  8. Andrulewicz E, Chubarenko B, Żmudzinński L (1994) Vistula Lagoon–a troubled region with a great potential. WWF Baltic Bull 1:16–21Google Scholar
  9. Anon (1996) Prioritizing hot spot remediations in the Vistula Lagoon catchment. Environmental Assessment and Planning for the Polish and Kaliningrad Parts of the Lagoon. Ministry of Environment, DenmarkGoogle Scholar
  10. Aristova GI (1965) Benthos of Curonian and Vistula lagoons (in Russian). Atlantic Institute for Fishery and Oceanography, Kaliningrad, pp 40–49Google Scholar
  11. Aristova GI (1973) Benthos of Curonian and Vistula lagoons of the Baltic Sea and its significance in fish food (in Russian). PhD Thesis. Kaliningrad Technical Institute for Fishery and Fish IndustryGoogle Scholar
  12. Bartel R, Wilkońska H, Borowski W (1996) Changes of the ichthyofauna in the Vistula Lagoon. In: Volskis R (ed) Proceedings of the International Meeting on Baltic Network of Biodiversity and Productivity of Selected Species in Coastal Ecosystems, Nida, (Lithuania), 4–8 October 1995, pp 12–24Google Scholar
  13. BERNET (2000) Wetland management. Bernet Theme Report, Attachment. Fyn Country, Odense, DenmarkGoogle Scholar
  14. Biernacka I (1956) Przyczynek do znajomości pierwotniaków Zalewu Wiślanego (in Polish). Pol Arch Hydrobiol 3:43–68Google Scholar
  15. Blazchishin AI (1998) Zur Geoökologie des Kurischen und des Frischen Haffs. Schriftenr Geowiss 3:39–57Google Scholar
  16. Bogdanov NA, Vorontsov AA, Morozova LN (2004) Tendencies of chemical pollution and dynamics of the Kaliningrad bay (in Russian). Russ Water Resour 31:576–590Google Scholar
  17. Brzeska A (1995) Zoobentos of the Vistula Lagoon (in Polish). MSc Thesis. Wyz·sza Szkoła Pedagogiczna w Słupsku. Zakład Ekologii i Ochrony Środowiska. SłupskGoogle Scholar
  18. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369CrossRefGoogle Scholar
  19. Chechko VA (2002) Analysis of spatial–temporal variability of suspended matter of the Kaliningrad Bight of the Baltic Sea (in Russian). Russ Water Resour 4:425–432Google Scholar
  20. Chechko VA (2004) Characteristic features of sedimentation in estuaries of lagoon type (by the example of Vistula and Curonian lagoons of the Baltic Sea). In: Alimov AF, Ivanova MB (eds) Regularities of hydro biological regime in water bodies of different types (in Russian). Moscow: “Scientific World”, pp 172–175Google Scholar
  21. Chechko VA, Blazchishin AI (2002) Bottom deposits of the Vistula Lagoon of the Baltic Sea. The Baltica: an International Yearbook on Geology, Geomorphology and Palaeogeography of the Baltic Sea 15:13–22Google Scholar
  22. Chubarenko B (2007) Shared watersheds in the South-Eastern Baltic. In: Chubarenko B (ed) Transboundary waters and basins in the south-eastern Baltic. Terra-Baltica, Kaliningrad, pp 5–12Google Scholar
  23. Chubarenko BV, Chubarenko IP (2001) New way of natural geomorphological evolution of the Vistula Lagoon due to crucial artificial influence. In: Emeliayanov EM (ed) Geology of the Gdansk Basin, Baltic Sea. Yantarny Skaz, Kaliningrad, pp 372–375Google Scholar
  24. Chubarenko BV, Chubarenko IP (2003) The transport of Baltic water along the deep channel in the Gulf of Kaliningrad and its influence on fields of salinity and suspended solids. In: Dahlin H, Dybern B, Petersson S (eds) ICES Cooperative research report, N 257Google Scholar
  25. Chubarenko BV, Chubarenko IP, Kuleshov AF (1998a) The results of 1994–1997 investigations of hydrological structure and transparency of water in the Russian part of the Vistula lagoon. In: Proceedings of the Symposium on Freshwater fish and the herring population in the coastal lagoons: environment and fisheries. 6–7 May 1998, Gdynia, Poland. Sea Fishery Institute, Gdynia, pp 45–59Google Scholar
  26. Chubarenko BV, Kuleshov AF, ChechkoVA (1998b) Field study of spatial–temporal variability of suspended substances and water transparency in Russian part of Vistula lagoon. In: Monographs in system ecology, vol 2. Proceedings of the second international workshop on interdisciplinary approaches in ecology. System research in Ecology: linking watershed, riverine and marine processes. Klaipeda, Lithuania, 25–27 August 1997, pp 12–17Google Scholar
  27. Chubarenko B, Lund-Hansen LCh, Beloshitskii A (2002) Comparative analysis of potential wind-wave impact on bottom sediments in the Vistula and Curonian lagoons. The Baltica: an International Yearbook on Geology, Geomorphology and Palaeogeography of the Baltic Sea 15:30–39Google Scholar
  28. Chubarenko BV, Koutitonski VG, Neves R, Umgiesser G (2004) Modelling concept. In: Gonenc IE, Wolflin J (eds) Coastal lagoons: ecosystem processes and modelling for sustainable use and developments. CRC, Boca Raton, pp 231–306Google Scholar
  29. Chubarenko IP, Chubarenko BV (2002) General water dynamics of the Vistula Lagoon. Environ Chem Phys 24:213–217Google Scholar
  30. Chubarenko IP, Tchepikova IS (2001) Numerical modelling analysis of artificial contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Int J Ecol Modelling Syst Ecol 138:87–100CrossRefGoogle Scholar
  31. Chubarenko IP, Esiukova EE, Hutter K (2004) Impact of the ice formation on seasonal salinity increasing the Vistula Lagoon. In: Proceedings of the VI scientific workshop on high resolution operational model of the Baltic Sea. 8–10 September 2003, Saint Petersburg, Russia. MORZASCHITA and Russian State Hydrometeorological University, St. Petersburg, pp 58–68Google Scholar
  32. Cywińska A, Różanńska Z (1978) Zoobenthos of the Vistula Lagoon (in Polish). Studia i Materiały Oceanologiczne, Biologia Morza 21:145–160Google Scholar
  33. Ezhova EE, Chubarenko BV, Blazhchishin AI, Chubarenko IP (1999) Sediment–water interactions in the Vistula Lagoon–some preliminary results. In: Heiskanen AS, Lundsgaard C, Registadt M, Olli K, Floderus S (eds) Sedimentation and recycling in aquatic ecosystems. Finn Environ 263:78–83Google Scholar
  34. Ezhova EE, Rudinskaya LV, Pavlenko-Lyatun MV (2004) Macrozoobenthos of the Vistula Lagoon (in Russian). In: Alimov AF, Ivanova MB (eds) Regularities of hydrobiological regime in water bodies of different types. Moscow: “Scientific World”, pp 146–164Google Scholar
  35. Ezhova EE, Żmudziński L, Maciejewska K (2005) Long-term trends in the macrozoobenthos of the Vistula Lagoon, southern Baltic Sea. Species composition and biomass distribution. Bull Sea Fisheries Inst 1:55–73Google Scholar
  36. Fall A (1993) Macrozoobenthos of the Vistula Lagoon (in Polish). M.Sc. Thesis. Uniwersytet Gdański, Zakład Genetyki, GdańskGoogle Scholar
  37. Jażdżewski K, Konopacka A, Grabowski M (2002) Four Ponto-Caspian and one American gammarid species (Crustacea, Amphipoda) invading Polish waters. Contrib Zool 71:115–122Google Scholar
  38. Kopiec J (2002) The Vistula Lagoon (in Polish). Report of the surface waters research carried out in the Polish part of the Vistula Lagoon in 2001. Inspection for Environmental Protection, ElblgGoogle Scholar
  39. Kratzer CR, Brezonik PL (1981) A Carlson-type trophic state index for nitrogen in Florida lakes. Water Res Bull 17:713–715Google Scholar
  40. Krylova OI (1985) Functioning of plankton and benthos of the Curonian and the Vistula Lagoons of the Baltic Sea in relation to their ecological differences (in Russian). Atlant NIRO, Kaliningrad, Dep. in CNIREIRH, N 714-RX-D-85, 21.10.1985Google Scholar
  41. Krylova OI, Naumenko EN (1992) Phytoplankton and primary production of the Vistula Bay (in Russian). Ecological fisheries research in the Vistula Bay of the Baltic Sea. Trudy AtlantNIRO, pp 14–33Google Scholar
  42. Kwiatkowski J (1996) Evaluation of possibilities of ecological quality improvement in the Vistula Lagoon (in Polish). GEOMOR, SopotGoogle Scholar
  43. Kwiatkowski J, Chubarenko B, Rasmussen EK (1996) The Vistula Lagoon as a trap of nutrient pollution of the Baltic Sea. In: Proceedings of the Conference: Functioning of Coastal Ecosystem in Various Geographical Regions, 5–7 September 1996, GdańskGoogle Scholar
  44. Kwiatkowski J, Rasmussen EK, Ezhova EE, Chubarenko BV (1997) The eutrophication model of the Vistula Lagoon. Oceanological Stud 26:5–33Google Scholar
  45. Lazarenko NN, Majewski A (eds) (1971) Hydrometeorological regime of the Vistula Lagoon (in Russian). Hydrometeoizdat, LeningradGoogle Scholar
  46. Maciejowska M, Macur SW (1978) Bacteriological analysis of the Vistula Lagoon waters from the point of view of hydrocarbon pollution (in Polish). Stud Mater Oceanol KBM PAN 21:37–52Google Scholar
  47. Margoński P, Bielecka M, Horbowa K, Gromisz S, Witek Z, Zalewski M, Wielgat M, Naumenko EN, Senin YM, Semenova SN, Warzocha J (in prep.) Nutrient loads and their effect: The problems from a natural science perspective. In: Bielecka M, Lewandowski A, Margoński P (eds) Functioning of the Vistula Lagoon. Sea Fisheries Institute, GdyniaGoogle Scholar
  48. Marut S (1990) Macrozoobenthos of the Vistula Lagoon (in Polish). MScThesis. Wyższa Szkoła Pedagogiczna w Słupsku, Instytut Biologii, SłupskGoogle Scholar
  49. Naumenko EN (1999) Species composition, seasonal and long-term dynamics of zooplankton abundance and biomass in the Vistula Lagoon of the Baltic Sea. In: Proceedings of the Symposium on freshwater fish and the herring populations in the coastal lagoons–environment and fisheries. 6–7 May 1998, Gdynia, Poland, pp 161–173Google Scholar
  50. Naumenko EN (2004) Zooplankton of the Vistula Lagoon (in Russian). In: Alimov AF, Ivanova MB (eds) Regularities of hydrobiological regime in water bodies of different types. Moscow “Scientific World”, pp 141–146Google Scholar
  51. Naumenko EN, Polunina YuYu (2000a) Cercopagis pengoi (Ostroumov, 1891) (Cladocera, Podonidae) a new species introduced to the Vistula Lagoon (Baltic Sea) (in Russian). In: Introduced species in the European Seas of Russia. Kolskij Nauchnyj Tsentr RAN, Apatity, pp 121–129Google Scholar
  52. Naumenko EN, Polunina YuYu (2000b) New Cladocera species Cercopagis pengoi (Ostroumov, 1891) (Crustacea) in the Vistula Lagoon on the Baltic sea. ICES CM 2000/U 14:8Google Scholar
  53. Niedoszytko K, Wiktor K (1978) Primary production in the Vistula Lagoon (in Polish). Stud Mater Oceanol KBM PAN, 21:95–122Google Scholar
  54. OECD (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, ParisGoogle Scholar
  55. Pliński M (1995) Vascular plants of the northern part of the Vistula Lagoon. Bull Mar Inst 22:81–87Google Scholar
  56. Pliński M, Simm A (1978) Seasonal fluctuations in the composition, distribution and quantity of phytoplankton in the Vistula Lagoon in 1974 and 1975 (in Polish). Studia i Materiały Oceanologiczne, Biologia Morza 21:53–80Google Scholar
  57. Pliński M, Kreńska B, Wnorowski T (1978) Floristic relationships and biomass of vascular plants of the Vistula Lagoon (in Polish). Studia i Materiały Oceanologiczne, Biologia Morza 21:161–196Google Scholar
  58. Polunina YuYu (2001) Population biology of the Ponto-Caspian invader Cercopagis pengoi (Cladocera) in the Vistula Lagoon of the Baltic Sea. Baltic Sea Science Congress 2001. Past, present and future–a joint venture. Stockholm University, Sweden, 25–29 November, Abstract, Poster No. 125:276Google Scholar
  59. Rasmussen EK (1997) Summary report on International project “Prioritising hot spot remediation in the Vistula Lagoon catchment: environmental assessment and planning for the Polish and Kaliningrad parts of the Lagoon”, Water Quality Institute (DK); Danish Hydraulic Institute (DK); GEOMOR (Poland); P.P. Shirshov Institute of Oceanology, Atlantic Branch (Russia), 2nd ednGoogle Scholar
  60. Renk H, Ochocki S, Zalewski M, Chmielowski H (2001) Environmental factors controlling primary production in the Polish part of the Vistula Lagoon. Bull Sea Fisheries Inst 1:77–95Google Scholar
  61. Riech F (1928) Beiträge zur Kenntnis der litoralen Lebensgemeinschaften in der poly- und mesohalinen Region des Frischen Haffes. Schr Phys Ökonom Ges 65:32–47Google Scholar
  62. Różańska Z (1963) The Vistula Firth zooplankton (in Polish). Zesz Nauk WSR w Olsztynie 16:41–57Google Scholar
  63. Różańska Z (1967) Zooplankton i krótka charakterystyka hydrologiczna Zalewu Wiślanego i Zalewu Szczecińskiego w świetle badań XX- lecia (in Polish). Stud Mater Mor Inst Ryb Gdynia Series A 4:27–37Google Scholar
  64. Różańska Z (1972) Zooplankton zalewów przybałtyckich (in Polish). Studia i Materiały Oceanologiczne 3:141–148Google Scholar
  65. Rudinskaya LV (1999) Water salinity impact upon bottom invertebrates structure in the Vistula Lagoon. In: Proceedings of symposium on freshwater fish and the herring populations in the coastal lagoons–environment and fisheries. 6–7 May 1998, Gdynia, Poland, pp 202–219Google Scholar
  66. Rudinskaya LV (2000a) The influence of water salinity on the structure of benthic invertebrates in the Vistula Lagoon of the Baltic Sea (in Russian). Hydrobiological Studies in the basin of the Atlantic Ocean. V.1.: Freshwater hydrobiology. Atlantic Institute for Fishery and Oceanography, Kaliningrad, pp 50–58Google Scholar
  67. Rudinskaya LV (2000b) Dynamics of biomass and abundance of the Marenzelleria viridis and its influence upon the structure of benthic community in the Vistula Lagoon. In: Invading species in the European Seas of Russia. Apatity: KNC RAN, pp 193–202Google Scholar
  68. Senin YuM, Smyslov VA, Khlopnikov MM (2004) General characteristics of the Vistula Bay. In: Alimov AF, Ivanova MB (eds) Regularities of hydrobiological regime in water bodies of different types. Moscow: “Scientific World”: pp 17–18Google Scholar
  69. Szarejko-Łukaszewicz D (1957) Qualitative investigations of phytoplankton of Firth of Vistula in 1953 (in Polish). Prace MIR, Gdynia 9:439–451Google Scholar
  70. Szymkiewicz R (1992) A mathematical model of storm surge in the Vistula Lagoon, Poland. Coastal Eng 16:181–203CrossRefGoogle Scholar
  71. Trzosińska A (1975) Suspended particulate matter (in Polish). In: Lazarenko NN, Majewski A (eds) The hydrometeorological system of the Vistula Lagoon. IMGW, Wydawnictwo Komunikacji i Łączności, WarsawGoogle Scholar
  72. Tsybaleva GA, Andronov VN, Polunina YuYu (2000) Structural characteristics of zooplankton from the Pregola River–Kaliningrad Sea Channel system. Proceedings of the International Conference KGTU. Kaliningrad, Part 1, pp 94–96Google Scholar
  73. Wiktor J, Wiktor K (1959) Study on biology of the Baltic Sea coastal lagoons in Poland (in Polish). Przyroda Polski Zachodniej 3:7–28Google Scholar
  74. Witek B, Pliński M (2000) The first recorded bloom of Prorocentrum minimum (Pavillard) in the coastal zone of the Gulf of Gdańsk. Oceanologia 42:29–36Google Scholar
  75. Zalewski M, Witek Z, Wielgat M, Margoński P, Senin YM (in prep.) Ecological modeling of the Vistula Lagoon. In: Bielecka M, Lewandowski A, Margoński P (eds) Functioning of the Vistula Lagoon. Sea Fisheries Institute, GdyniaGoogle Scholar
  76. Żmudziński L (1957) The Firth of Vistula zoobenthos. Reports of the Sea Fisheries Institute in Gdynia 9:453–500Google Scholar
  77. Żmudziński L (2000) Long-term changes in macrozoobenthos of the Vistula Lagoon. Sea and Environment (Jura ir Aplinka), Klaipeda University, 1:46–50Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • B. Chubarenko
    • 1
  • P. Margoński
    • 2
  1. 1.Atlantic Branch of P.P. Shirshov Institute of OceanologyRussian Academy of SciencesKalingradRussia
  2. 2.Sea Fisheries InstituteGdyniaPoland

Personalised recommendations