A Link-Based Rank of Postings in Newsgroup

  • Hongbo Liu
  • Jiahai Yang
  • Jiaxin Wang
  • Yu Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4571)


Discussion systems such as Usenet, BBS, Forum are important resources for information sharing, view exchanging, problem solving and product feedback, etc. on Internet. The postings in newsgroups on Usenet represents the judgments and choices of participators. The structure of postings could provide helpful information for the users. In this paper, we present a method called PostRank to rank the postings based on the structure of newsgroup. Its results correspond to the eigenvectors of the transition probability matrix and the stationary vectors of the Markov chains. It could provide useful global information for the newsgroup and it can be used to help the users access information in it more effectively and efficiently. This method can be also applied on other discussion systems. Some experimental results and discussions on real data sets collected by us are also provided.


link analysis rank newsgroup discussion systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-Wesley (1999)Google Scholar
  2. 2.
    Brin, S., Page, L., Motwanl, R., Winogard, T.: The pagerank citation ranking: Bring order to the web. Technical report, Stanford University, (1999), Available at
  3. 3.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. of The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York (2001)Google Scholar
  5. 5.
    Schwartz, M.F., Wood, D.C.M.: Discovering shared interests using graph analysis. Communications of the ACM 36(8), 78–89 (1993)CrossRefGoogle Scholar
  6. 6.
    Tuulos, V.H., Tirri, H.: Combining topic models and social networks for chat data mining. In: Proc. of 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 206–213 (2004)Google Scholar
  7. 7.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  8. 8.
    Xi, W., Lind, J., Brill, E.: Learning effective ranking functions for newsgroup search. In: Proc. of the 27st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM Press, New York (2004)Google Scholar
  9. 9.
    Borgs, C., Chayes, J.T., Mahdian, M., Saberi, A.: Exploring the community structure of newsgroups. In: Proc. of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 783–787 (2004)Google Scholar
  10. 10.
    Agrawal, S.D., Rajagopaian, S., Srikant, R., Xu, Y.: Mining newsgroups using networks arising from social behavior. In: Proc. of the Twelfth International World Wide Web Conference, ACM Press, New York (2003)Google Scholar
  11. 11. Network news transfer protocol (Internet(WWW)),
  12. 12.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13. Comprehensive perl archive network (Internet(WWW)),
  14. 14.
    Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathmatics 1, 335–380 (2003)MathSciNetGoogle Scholar
  15. 15.
    Tsaparas, P.: Link Analysis Ranking. PhD thesis, University of Toronto (2004)Google Scholar
  16. 16.
    Ng, A.Y., Zheng, A.X., Jordan, M.I.: Link analysis, eigenvectors, and stability. In: Proc. of International Joint Conference on Artificial Intelligence (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hongbo Liu
    • 1
  • Jiahai Yang
    • 1
  • Jiaxin Wang
    • 2
  • Yu Zhang
    • 2
  1. 1.The Network Research Center 
  2. 2.Department of Computer Science and Technology, Tsinghua University, Beijing, 100084China

Personalised recommendations