Advertisement

Critical Scale for Unsupervised Cluster Discovery

  • Tomoya Sakai
  • Atsushi Imiya
  • Takuto Komazaki
  • Shiomu Hama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4571)

Abstract

This paper addresses the scale-space clustering and a validation scheme. The scale-space clustering is an unsupervised method for grouping spatial data points based on the estimation of probability density function (PDF) using a Gaussian kernel with a variable scale parameter. It has been suggested that the detected cluster, represented as a mode of the PDF, can be validated by observing the lifetime of the mode in scale space. Statistical properties of the lifetime, however, are unclear. In this paper, we propose a concept of the ‘critical scale’ and explore perspectives on handling it for the cluster validation.

Keywords

Probability Density Function Scale Space Critical Curve Valid Cluster Lifetime Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parzen, E.: On the estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chakravarthy, S.V., Ghosh, J.: Scale-Based Clustering Using the Radial Basis Function Network. IEEE Trans. on Neural Networks 7(5), 1250–1261 (1996)CrossRefGoogle Scholar
  3. 3.
    Roberts, S.J.: Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition 30(2), 261–272 (1997)CrossRefGoogle Scholar
  4. 4.
    Nakamura, E., Kehtarnavaz, N.: Determining number of clusters and prototype locations via multi-scale clustering. Pattern Recognition Letters 19(14), 1265–1283 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hinneburg, A., Keim, D.A.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Proc. 4th International Conference on Knowledge Discovery and Data Mining, pp. 58–65 (1998)Google Scholar
  6. 6.
    Leung, Y., Zhang, J.-S., Xu, Z.-B.: Clustering by scale-space filtering. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12), 1396–1410 (2000)CrossRefGoogle Scholar
  7. 7.
    Carreira-Perpiñán, M.Á., Williams, C.K.I.: On the number of modes of a Gaussian mixture. In: Griffin, L.D, Lillholm, M. (eds.) Scale Space Methods in Computer Vision. LNCS, vol. 2695, pp. 625–640. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Carreira-Perpiñán, M.Á.: Fast nonparametric clustering with Gaussian blurring mean-shift. In: ICML 2006. ACM International Conference Proceeding Series, vol. 148, pp. 153–160 (2006)Google Scholar
  9. 9.
    Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory 21(1), 32–40 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine intelligence 17(8), 790–799 (1995)CrossRefGoogle Scholar
  11. 11.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  12. 12.
    Griffin, L.D., Lillholm, M.: Mode estimation using pessimistic scale space tracking. In: Griffin, L.D, Lillholm, M. (eds.) Scale Space Methods in Computer Vision. LNCS, vol. 2695, pp. 266–280. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1983)Google Scholar
  14. 14.
    Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IEICE Japan, Trans. D (in Japanese) 68, 508–514 (1985)Google Scholar
  16. 16.
    Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10, 237–252 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sporring, J., Nielsen, M., Florack, L.M.J., Johansen, P. (eds.): Gaussian Scale-Space Theory. Computational Imaging and Vision Series. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  18. 18.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)Google Scholar
  19. 19.
    Johansen, P.: On the classification of toppoints in scale space. Journal of Mathematical Imaging and Vision 4(1), 57–67 (1994)CrossRefGoogle Scholar
  20. 20.
    Griffin, L.D., Colchester, A.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image and Vision Computing 13(7), 543–557 (1995)CrossRefGoogle Scholar
  21. 21.
    Florack, L.M.J., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12(1), 65–79 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18(2), 169–189 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sakai, T., Imiya, A.: Figure field analysis of linear scale-space image. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 374–385. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Sakai, T., Imiya, A.: Scale-space hierarchy of singularities. In: Olsen, O.F., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 181–192. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Bratley, P., Fox, B.: Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator. ACM Trans. on Mathematical Software 14(1), 88–100 (1988)zbMATHCrossRefGoogle Scholar
  26. 26.
    Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattern recognition via linear programming: Theory and application to medical diagnosis. In: Proc. of the Workshop on Large-Scale Numerical Optimization, pp. 22–31 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tomoya Sakai
    • 1
  • Atsushi Imiya
    • 1
  • Takuto Komazaki
    • 2
  • Shiomu Hama
    • 2
  1. 1.Institute of Media and Information Technology, Chiba UniversityJapan
  2. 2.Graduate School of Science and Technology, Chiba UniversityJapan

Personalised recommendations