Skip to main content

Simulating the stopping dynamics of highly charged ions in an ultra-cold, strongly coupled plasma

  • Conference paper
TCP 2006
  • 498 Accesses

Abstract

We introduce a method for stopping highly charged ions (HCIs) in a laser-cooled one-component plasma (OCP) of 24Mg+ ions and present results on stopping times derived from realistic molecular dynamics simulations of the complete stopping process. This stopping scheme can provide ultra-cold highly charged ions for future in-trap precision mass measurements. The choice of an ultra-cold ion plasma as a stopping medium is governed by the almost negligible charge exchange of the HCl with the laser-cooled ions and the very low temperatures which can be reached. In our analysis we focus on the stability and fast recooling of the plasma — two features essential for the experimental realization of this stopping scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dilling, J., Bricault, P., Smith, M., Kluge. H.-J., TITAN collaboration: The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes. Nucl. ínstrum. Methods Phys. Res., Sect. B 204, 492–496 (2003)

    Article  ADS  Google Scholar 

  2. Schwarz, S., Bollen, G., Lawton, D., Lofy, P., Morrissey, DJ., Ottarson, J., Ringle, R., Schury, P., Sun, T., Varentsov, V., Weissman, L.: The low-energy-beam and ion-trap facility at NSCL/MSU. Nucl. Instrum. Methods Phys. Res., Sect. B 204, 507–511 (2003)

    Article  ADS  Google Scholar 

  3. Quint, W., Dilling, J., Djekic, S., Häffner, H., Hermanspahn, N., Kluge, H.-J., Marx, G., Moore, R., Rodriguez, D., Schönfelder, J., Sikier, G., Valenzuela, T., Verdú, J., Weber, C., Werth, G., HITRAP: A facility for experiments with trapped highly charged ions. Hyperfine Interact. 132, 457–461 (2001)

    Article  ADS  Google Scholar 

  4. Szerypo, J., Habs, D., Heinz, S., Neumayr, J., Thirolf, P., Wilfart, A., Voit, F.: MAFFTRAP: ion trap system for MAFF. Nucl. Instrum. Methods Phys. Res., Sect. B 204 512–516 (2003)

    Article  ADS  Google Scholar 

  5. Blaum, K., MATS collaboration: MATS technical proposal, FAIR/NUSTAR LOI Identification No. 8 (2005)

    Google Scholar 

  6. Kester, O.: Entwicklung einer Elektronenstrahlionenquelle mit “schneller” Ionenextraktion zur Anwendung bei der Strahlentherapie mit leichten Ionen, Dissertation Johann-Wolfgang-Goethe Universität, Frankfurt (1995)

    Google Scholar 

  7. Savard, G., Becker, St., Bollen, G., Kiuge, H.-I., Moore, R.B., Otto, Th., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158, 247–252 (1991)

    Article  ADS  Google Scholar 

  8. Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.-J., Lamour, E., Lunney, D., Moore, R.B., Scheidenberger, C, Schwarz, S., Sikier, G., Szerypo, J.: A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods Phys. Res., Sect. A 469, 254–275 (2001)

    Article  ADS  Google Scholar 

  9. Häffner, H., Beier, T., Djekic, S., Hermanspahn, N., Kluge, H.-J., Quint, W., Stahl, S., Verdú, J., Valenzuela, T., Werth, G.: Double Penning trap technique for precise g factor determinations in highly charged ions. Eur. Phys. J. D 22, 163–182 (2003)

    Article  ADS  Google Scholar 

  10. Gabrieise, G., Fei, X., Orozco, L.A., Tjoeiker, R.L., Haas, J., Kalinowsky, H., Trainor, T.A., Kells, W.: Cooling and slowing of trapped antiprotons below 100 meV. Phys. Rev. Lett. 63, 1360–1363 (1989)

    Article  ADS  Google Scholar 

  11. Werth, G., Beier, Th., Djekic, S., Kluge, H.-J., Quint, W., Valenzuela, T., Verdu, J., Vogel, M.: Precision studies in traps: measurement of fundamental constants and tests of fundamental theories. Nucl. Instrum. Methods Phys. Res., Sect. B 205, 1–8 (2003)

    Article  ADS  Google Scholar 

  12. Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Stopping highly charged ions in a laser-cooled one component plasma of 24Mg+ ions. Int. J. Mass Spectrom. 251, 179–189 (2006)

    Article  ADS  Google Scholar 

  13. Beck, B.R., Steiger, J., Weinberg, G., Church, D.A., McDonald, J., Schneider, D.: Measurement of charge exchange between H2 and low-energy ions with charge states 35 ≤ q ≤ 80. Phys. Rev. Lett. 77, 1735–1738 (1996)

    Article  ADS  Google Scholar 

  14. Olson, R.E., Salop, A.: Electron transfer between multicharged ions and neutral species. Phys. Rev. A: At., Mol., Opt. Phys. 14, 579–585 (1976)

    Article  ADS  Google Scholar 

  15. Larson, D.J., Bergquist, J.C., Bollinger, J.J., Itano, W.M., Wineland, D.J.: Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70–73 (1986)

    Article  ADS  Google Scholar 

  16. Bowe, P., Hornekær, L., Brodersen, C, Drewsen, M., Hängst, J.S.: Sympathetic crystallization of trapped ions. Phys. Rev. Lett. 82, 2071–2074 (1999)

    Article  ADS  Google Scholar 

  17. Roth, B., Fröhlich, U., Schiller, S.: Sympathetic cooling of 4He+ ions in a radio-frequency trap. Phys. Rev. Lett. 94, 053001–1–053001–4 (2005)

    Article  ADS  Google Scholar 

  18. Zwicknagel, G., Toepffer, C, Reinhard, P.-G.: Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117–208 (1999)

    Article  ADS  Google Scholar 

  19. Schramm, U., Habs, D.: Crystalline ion beams. Prog. Part. Nucl. Phys. 53, 583–677 (2004)

    Article  ADS  Google Scholar 

  20. Sutmann, G.: Classical molecular dynamics. In: Grotendorst, J., Marx, D., Muramatsu, M. (eds.) Quantum Simulations of Complex Many-Body Systems, NIC Series, vol. 10, pp. 211–254. John von Neumann Institue for Computing, Jülich (2002)

    Google Scholar 

  21. Plimpton, S., Hendrickson, B.: A new parallel method for molecular dynamics simulation of macromolecular systems. J. Comput. Chem. 17, 326–337 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bussmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Bussmann, M., Habs, D., Schramm, U. (2007). Simulating the stopping dynamics of highly charged ions in an ultra-cold, strongly coupled plasma. In: Dilling, J., Comyn, M., Thompson, J., Gwinner, G. (eds) TCP 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73466-6_23

Download citation

Publish with us

Policies and ethics