Skip to main content

Using Disjunctions in Association Mining

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4597)

Abstract

The paper focuses on usage of disjunction of items in association rules mining. We used the GUHA method instead of the traditional apriori algorithm and enhanced the former implementations of the method with ability of disjunctions setting between items. Experiments were conducted in our Ferda data mining environment on data from the medical domain. We found strong and meaningful association rules that could not be obtained without the usage of disjunction.

Keywords

  • Association Mining
  • Disjunction
  • GUHA Method
  • Ferda

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-73435-2_27
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-73435-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of the ACM SIGMOD Conference on Management of Data, pp. 207–216

    Google Scholar 

  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of association rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)

    Google Scholar 

  3. Hájek, P.: The GUHA Method in the Last Century and Now. Znalosti. In: Conference on Data Mining, Brno 2006, pp. 10–20 (in Czech) (2006)

    Google Scholar 

  4. Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1, 293–308 (1966)

    MATH  CrossRef  Google Scholar 

  5. Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer, Heidelberg (1978)

    Google Scholar 

  6. Hájek, P., Holeňa, M.: Formal logics of discovery and hypothesis formation by machine. Theoretical Computer Science 292, 345–357 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Holeňa, M.: Fuzzy hypotheses testing in framework of fuzzy logic. Fuzzy Sets and Systems, 149, pp. 229–252

    Google Scholar 

  8. KDNuggets Polls: Data mining/analytic techniques you use frequently, www.kdnuggets.com/polls/2005/data_mining_techniques.htm

  9. Kováč, M., Kuchař, T., Kuzmin, A., Ralbovský, M.: Ferda, New Visual Environment for Data Mining. Znalosti, Conference on Data Mining, Hradec Králové, pp. 118–129 (in Czech) (2006)

    Google Scholar 

  10. Kuchař, T.: Experimental GUHA Procedures, Master Thesis, Faculty of Mathematics and Physics, Charles University, Prague (in Czech) (2006)

    Google Scholar 

  11. Kupka, D.: User support 4ft-Miner procedure for Data Mining. Master Thesis, Faculty of Mathematics and Physics, Charles University, Prague (in Czech) (2006)

    Google Scholar 

  12. Rauch, J.: Logic of Association Rules. Applied Inteligence 22(1), 9–28

    Google Scholar 

  13. Rauch, J.: Some Remarks on Computer Realisations of GUHA Procedures. International Journal of Man-Machine Studies 10, 23–28 (1978)

    CrossRef  Google Scholar 

  14. Rauch, J., Šimåunek, M.: An Alternative Approach to Mining Association Rules. In: Lin, T.Y., Ohsuga, S., Liau, C.J., Tsumoto, S. (eds.) Foundations of Data Mining and Knowledge Discovery, pp. 219–239. Springer, Heidelberg (2005)

    Google Scholar 

  15. Rauch, J., Šimåunek, M.: GUHA Method and Granular Computing. Proceedings of IEEE International Conference on Granular Computing (2005), http://www.cs.sjsu.edu/~grc/grc2005/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ralbovský, M., Kuchař, T. (2007). Using Disjunctions in Association Mining. In: Perner, P. (eds) Advances in Data Mining. Theoretical Aspects and Applications. ICDM 2007. Lecture Notes in Computer Science(), vol 4597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73435-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73435-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73434-5

  • Online ISBN: 978-3-540-73435-2

  • eBook Packages: Computer ScienceComputer Science (R0)