Skip to main content

Manifestation and Exploitation of Invariants in Bioinformatics

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

  • 598 Accesses

Abstract

Whenever a programmer writes a loop, or a mathematician does a proof by induction, an invariant is involved. The discovery and understanding of invariants often underlies problem solving in many domains. I discuss in this tutorial powerful invariants in some problems relevant to biology and medicine. In the process, we learn several major paradigms (invariants, emerging patterns, guilt by association), some important applications (active sites, key mutations, origin of species, protein functions, disease diagnosis), some interesting technologies (sequence comparison, multiple alignment, machine learning, signal processing, microarrays), and the economics of bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., et al.: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  2. Bateman, A., Birney, E., et al.: Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Research 27(1), 260–262 (1999)

    Article  Google Scholar 

  3. Breitling, R., Herzyk, P.: Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. Journal of Bioinformatics and Computational Biology 3(5), 1171–1190 (2005)

    Article  Google Scholar 

  4. Broberg, P.: Statistical methods for ranking differentially expressed genes. Genome Biology, 4 R41.1–R41.9 (2003)

    Google Scholar 

  5. Brown, D.G., Li, M., Ma, B.: A tutorial of recent developments in the seedings of local alignment. Journal of Bioinformatics and Computational Biology 2(4), 819–842 (2004)

    Article  Google Scholar 

  6. Chin, F.Y.L., Ho, N.L., et al.: Efficient constrained multiple sequence alignment with performance guarantee. Journal of Bioinformatics and Computational Biology 3(1), 1–18 (2005)

    Article  Google Scholar 

  7. Chua, H.N., Sung, W.-K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  8. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. 5th ACM SIGKDD Intl Conf on Knowledge Discovery & Data Mining, pp. 15–18, San Diego (1999)

    Google Scholar 

  9. Doolittle, R.F., Hunkapiller, M.W.: Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221, 275–277 (1983)

    Article  Google Scholar 

  10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Kung, S.-Y., Mak, M.-W., Tagkopoulos, I.: Symmetric and asymmetric multi-modality biclustering analysis for microarray data matrix. Journal of Bioinformatics and Computational Biology 4(2), 275–298 (2006)

    Article  Google Scholar 

  12. Li, J., Wong, L.: Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns. Bioinformatics 18, 725–734 (2002)

    Article  Google Scholar 

  13. Li, M., Ma, B., et al.: PatternHunter II: Highly sensitive and fast homology search. Journal of Bioinformatics and Computational Biology 2(3), 417–440 (2004)

    Article  Google Scholar 

  14. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In: Proc. 6th Annual Intl Conf on Research in Computational Molecular Biology, pp. 225–232 (2002)

    Google Scholar 

  15. Lim, K.L., Kolatkar, P.R., et al.: Interconversion of kinetic identities of the tandem catalytic domains of receptor-like protein-tyrosine phosphatase PTP-α by two point mutations is synergistic and substrate-dependent. Journal of Biological Chemistry 273(44), 28986–28993 (1998)

    Article  Google Scholar 

  16. Liu, H., Wong, L.: Data mining tools for biological sequences. Journal of Bioinformatics and Computational Biology 1(1), 139–168 (2003)

    Article  Google Scholar 

  17. Ma, B., Wu, L., Zhang, K.: Improving the sensitivity and specificity of protein homology search by incorporating predicted secondary structures. Journal of Bioinformatic and Computational Biology 4(3), 709–720 (2006)

    Article  MathSciNet  Google Scholar 

  18. Miller, L.D., Long, P.M., et al.: Optimal gene expression analysis by microarrays. Cancer Cell 2, 353–361 (2002)

    Article  Google Scholar 

  19. Mukherjee, S., Mitra, S.: Hidden Markov models, grammars, and biology: A tutorial. Journal of Bioinformatics and Computational Biology 3(2), 491–526 (2005)

    Article  Google Scholar 

  20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 444–453 (1970)

    Article  Google Scholar 

  21. Niijima, S., Kuhara, S.: Multiclass molecular cancer classification by kernel subspace methods with effective kernel parameter selection. Journal of Bioinformatics and Computational Biology 3(5), 1071–1088 (2005)

    Article  Google Scholar 

  22. Pui, C.H., Evans, W.E.: Acute lymphoblastic leukemia. New England Journal of Medicine 339, 605–615 (1998)

    Article  Google Scholar 

  23. Schrappe, M., Reiter, A., et al.: Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: Results of trial ALL-BFM 90. Blood 95, 3310–3322 (2000)

    Google Scholar 

  24. Slonim, D.K., Tamayo, P., et al.: Class prediction and discovery using gene expression data. In: Proc. 4th Intl Conf on Computational Molecular Biology, pp. 262–271 (2000)

    Google Scholar 

  25. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  26. Subramanian, A., Tamayo, P., et al.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Nat. Acad. Sci. USA 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  27. Sykes, B.: The Seven Daughters of Eve. Gorgi Books (2002)

    Google Scholar 

  28. Thompson, J.D., Gibson, T.J., et al.: The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24), 4876–4882 (1997)

    Article  Google Scholar 

  29. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Research 22, 4673–4680 (1994)

    Article  Google Scholar 

  30. Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences, and Genomes. CRC Press, Boca Raton (2000)

    Google Scholar 

  31. Wooley, J.C., Lin, H.S. (eds.): Catalyzing Inquiry at the Interface of Computing and Biology. National Academy Press, Washington (2005)

    Google Scholar 

  32. Wu, J., Kasif, S., DeLisi, C.: Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19(12), 1524–1530 (2003)

    Article  Google Scholar 

  33. Yeoh, E.-J., Ross, M.E., et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, L. (2007). Manifestation and Exploitation of Invariants in Bioinformatics. In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics