Skip to main content

Low Distortion Spanners

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Abstract

A spanner of an undirected unweighted graph is a subgraph that approximates the distance metric of the original graph with some specified accuracy. Specifically, we say H ⊆ G is an f-spanner of G if any two vertices u,v at distance d in G are at distance at most f(d) in H. There is clearly some tradeoff between the sparsity of H and the distortion function f, though the nature of this tradeoff is still poorly understood.

In this paper we present a simple, modular framework for constructing sparse spanners that is based on interchangable components called connection schemes. By assembling connection schemes in different ways we can recreate the additive 2- and 6-spanners of Aingworth et al. and Baswana et al. and improve on the (1 + ε,β)-spanners of Elkin and Peleg, the sublinear additive spanners of Thorup and Zwick, and the (non constant) additive spanners of Baswana et al. Our constructions rival the simplicity of all comparable algorithms and provide substantially better spanners, in some cases reducing the density doubly exponentially.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths. SIAM J. Comput 28(4), 1167–1181 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete and Computational Geometry 9, 81–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Awerbuch, B.: Complexity of network synchronization. J. ACM 32, 804–823 (1985)

    MATH  MathSciNet  Google Scholar 

  4. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: FOCS 2006, (2006)

    Google Scholar 

  5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α,β)-spanners and purely additive spanners. In: SODA 2005, (2005)

    Google Scholar 

  6. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse subgraphs that preserve long distances and additive spanners. SIAM J. Discr. Math. 9(4), 1029–1055 (2006)

    Google Scholar 

  7. Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise distance preservers. In: SODA 2005 (2005)

    Google Scholar 

  8. Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise preservers. SIAM J. Discrete Math (to appear)

    Google Scholar 

  9. Cowen, L.J., Wagner, C.G.: Compact roundtrip routing in directed networks. J. Algor. 50(1), 79–95 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Elkin, M., Peleg, D.: (1 + ε,β)-spanner constructions for general graphs. SIAM J. Comput. 33(3), 608–631 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε,β)-spanners in the distributed and streaming models. In: PODC 2004 (2004)

    Google Scholar 

  13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Halperin, S., Zwick, U.: Unpublished result (1996)

    Google Scholar 

  15. Narasimhan, G., Smid, M.: Geometric Spanner Networks (2007)

    Google Scholar 

  16. Peleg, D., Schaffer, A.A.: Graph spanners. J. Graph Theory  13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18, 740–747 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pettie, S.: Low distortion spanners. See, http://www.eecs.umich.edu/~pettie

  19. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. In: SODA 2002 (2002)

    Google Scholar 

  20. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: STOC 2004 (2004)

    Google Scholar 

  21. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001 (2001)

    Google Scholar 

  22. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: SODA 2006 (2006)

    Google Scholar 

  23. Thorup, M., Zwick, U.: Approximate distance oracles. J.ACM 52, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  24. Wenger, R.: Extremal graphs with no C 4’s, C 6’s, or C 10’s. J. Combin. Theory Ser. B 52(1), 113–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Woodruff, D.: Lower bounds for additive spanners, emulators, and more. In: FOCS 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pettie, S. (2007). Low Distortion Spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics