Mechanism Design for Fractional Scheduling on Unrelated Machines

  • George Christodoulou
  • Elias Koutsoupias
  • Annamária Kovács
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


In this paper, we consider the mechanism design version of the fractional variant of the scheduling problem on unrelated machines. We give a lower bound of 2 − 1/n for any fractional truthful mechanism, while we propose a truthful mechanism that achieves approximation of 1 + (n − 1)/2, for n machines. We also focus on an interesting family of allocation algorithms, the task-independent algorithms. We give a lower bound of 1 + (n − 1)/2, that holds for every (not only monotone) allocation algorithm of this class. Under this consideration, our truthful independent mechanism is the best that we can hope from this family of algorithms.


Execution Time Mechanism Design Approximation Ratio Allocation Algorithm Payment Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD thesis, Cornell University (January 2004)Google Scholar
  3. 3.
    Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. In: SODA, pp. 205–214 (2003)Google Scholar
  4. 4.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS, pp. 482–491 (2001)Google Scholar
  5. 5.
    Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In: AAAI, pp. 241–247 (2005)Google Scholar
  6. 6.
    Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial auctions. In: TARK, pp. 72–87 (2003)Google Scholar
  7. 7.
    Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A.: Weak monotonicity characterizes deterministic dominant strategy implementation. Econometrica 74(4), 1109–1132 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: STOC, pp. 39–48 (2005)Google Scholar
  9. 9.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. In: SODA, pp. 1163–1170 (2007)Google Scholar
  10. 10.
    Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial auctions with complement-free bidders. In: STOC, pp. 610–618 (2005)Google Scholar
  11. 11.
    Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combinatorial auctions. In: STOC, pp. 644–652 (2006)Google Scholar
  12. 12.
    Gui, H., Müller, R., Vohra, R.V.: Dominant strategy mechanisms with multidimensional types. In: Computing and Markets (2005)Google Scholar
  13. 13.
    Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–627. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Kovács, A.: Fast Algorithms for Two Scheduling Problems. PhD thesis, Universität des Saarlandes (2007)Google Scholar
  15. 15.
    Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: FOCS, pp. 574–583 (2003)Google Scholar
  16. 16.
    Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. In: FOCS, pp. 595–604 (2005)Google Scholar
  17. 17.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46(1), 259–271 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: SODA, pp. 1143–1152 (2007)Google Scholar
  19. 19.
    Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1), 58–73 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: EC, pp. 286–293 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • George Christodoulou
    • 1
  • Elias Koutsoupias
    • 2
  • Annamária Kovács
    • 1
  1. 1.Max-Planck-Institut für Informatik, SaarbrückenGermany
  2. 2.Department of Informatics, University of Athens 

Personalised recommendations