Advertisement

Maximal Infinite-Valued Constraint Languages

  • Manuel Bodirsky
  • Hubie Chen
  • Jan Kára
  • Timo von Oertzen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)

Abstract

We systematically investigate the computational complexity of constraint satisfaction problems for constraint languages over an infinite domain. In particular, we study a generalization of the wellestablished notion of maximal constraint languages from finite to infinite domains. If the constraint language can be defined with an ù-categorical structure, then maximal constraint languages are in one-to-one correspondence to minimal oligomorphic clones. Based on this correspondence, we derive general tractability and hardness criteria for the corresponding constraint satisfaction problems.

Keywords

Constraint Satisfaction Constraint Satisfaction Problem Spatial Reasoning Temporal Reasoning Constraint Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bodirsky, M.: Cores of countably categorical structures. Logical Methods in Computer Science (LMCS) (2007), doi:DOI: 10.2168/LMCS-3(1:2)Google Scholar
  3. 3.
    Bodirsky, M., Chen, H.: Oligomorphic clones. Algebra Universalis (to appear, 2007)Google Scholar
  4. 4.
    Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite templates. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 646–659. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation 16(3), 359–373 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Broxvall, M., Jonsson, P.: Point algebras for temporal reasoning: Algorithms and complexity. Artif. Intell. 149(2), 179–220 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bulatov, A.: A graph of a relational structure and constraint satisfaction problems. In: Proceedings of the 19th IEEE Annual Symposium on Logic in Computer Science (LICS 2004), Turku, Finland (2004)Google Scholar
  9. 9.
    Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proceedings of STOC 2001, pp. 667–674 (2001)Google Scholar
  10. 10.
    Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Düntsch, I.: algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review 23, 315–357 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Evans, D.: Examples of \({\aleph_{0}}\)-categorical structures. In: Automorphisms of first-order structures, pp. 33–72 (1994)Google Scholar
  13. 13.
    Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gardener, T.: Infinite dimensional classical groups. J. London Math. Soc 51, 219–229 (1995)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Garey, Johnson.: A Guide to NP-completeness. CSLI Press, Stanford (1978)Google Scholar
  16. 16.
    Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  17. 17.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jonsson, P., Drakengren, T.: A complete classification of tractability in RCC-5. J. Artif. Intell. Res. 6, 211–221 (1997)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Krokhin, A.A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM 50(5), 591–640 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Journal of the ACM 42(1), 43–66 (1995)zbMATHCrossRefGoogle Scholar
  21. 21.
    Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. Artif. Intell. 108(1-2), 69–123 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rosenberg, I.G.: Minimal clones I: the five types. Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai 43, 405–427 (1986)Google Scholar
  23. 23.
    Schmerl, J.H.: Countable homogeneous partially ordered sets. Algebra Universalis 9, 317–321 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Manuel Bodirsky
    • 1
  • Hubie Chen
    • 2
  • Jan Kára
    • 3
  • Timo von Oertzen
    • 4
  1. 1.Department of Algorithms and Complexity, Humboldt University, Berlin 
  2. 2.Department of Applied Mathematics, Charles University, Prague 
  3. 3.Departament de Tecnologies de la Informació i les Comunicacions 
  4. 4.Max-Planck-Institute for Human Development, Berlin 

Personalised recommendations