Co-Logic Programming: Extending Logic Programming with Coinduction

  • Luke Simon
  • Ajay Bansal
  • Ajay Mallya
  • Gopal Gupta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


In this paper we present the theory and practice of co-logic programming (co-LP for brevity), a paradigm that combines both inductive and coinductive logic programming. Co-LP is a natural generalization of logic programming and coinductive logic programming, which in turn generalizes other extensions of logic programming, such as infinite trees, lazy predicates, and concurrent communicating predicates. Co-LP has applications to rational trees, verifying infinitary properties, lazy evaluation, concurrent LP, model checking, bisimilarity proofs, etc.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krzysztof, R.: Apt. Logic programming. In: Handbook of Theoretical Computer Science, pp. 493–574. MIT Press, Cambridge (1990)Google Scholar
  2. 2.
    Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena. CSLI Pub. (1996)Google Scholar
  3. 3.
    Colmerauer, A.: Equations and inequations on finite and infinite trees. In: FGCS 1984Google Scholar
  4. 4.
    Courcelle, B.: Fundamental properties of infinite trees. TCS, pp. 95–212 (1983)Google Scholar
  5. 5.
    Hanus, M.: Integration of functions into LP. J. Logic Prog. 19, 20, 583–628 (1994)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Jaffar, J., Stuckey, P.J.: Semantics of infinite tree LP. TCS 46(2–3), 141–158 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lloyd, J.W.: Foundations of LP, 2nd edn. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Rocha, R., et al.: Theory and Practice of Logic Programming 5(1-2), 161–205, (2005)Tabling Engine That Can Exploit Or-Parallelism. In: ICLP 2001, pp. 43–58 (2001)Google Scholar
  9. 9.
    Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Simon, L., Mallya, A., Bansal, A., Gupta, G.: Co-Logic Programming: Extending Logic Programming with Coinduction. TR #UTDCS-21-06, UT Dallas (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luke Simon
    • 1
  • Ajay Bansal
    • 1
  • Ajay Mallya
    • 1
  • Gopal Gupta
    • 1
  1. 1.Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080 

Personalised recommendations